IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 3, NO. 2, JUNE 1995 215

A System for Converting Braille into Print

Paul Blenkhorn

Abstract— This paper provides a detailed description of a
method for converting braille, as it is stored as “characters”
in a computer, into print. The system has been designed to
be configurable for a wide range of languages and character
sets, and uses a predominantly table driven method to achieve
this. The algorithm is explained in the context of the conversion
of Standard English Braille into print and the tables for this
transformation are given.

I. INTRODUCTION

N INCREASING number of computer-based systems are

becoming available to assist people with disabilities. For
blind people, such systems typically use a standard or braille
keyboard for inputting into a computer, with speech or braille
being used for output. These systems can vary from ones
which have been specifically designed to meet a particular
need, such as a transcription of blind children’s examinations
[1], “personal organizers” [2], or general purpose solutions
which enable a user to access standard software on industry
standard hardware [3]-[5]. In those systems which permit a
blind person to enter information using a braille keyboard,
there is a requirement to convert the braille codes into standard
text. This conversion can take place directly onto paper [6],
[7], as the information is spoken or printed [2], or at the point
at which it is stored in the computer’s memory [8]. Although
such systems have been developed before, there has not been
a detailed description published of how this can be achieved.
The aim of this paper is to provide such a detailed description,
together with the limitations of the method. Although this
algorithm has been designed to deal with a large number of
both languages and character sets, it is discussed here mainly
in the context of the conversion of Standard English Braille
into text.

This conversion utility is part of a more general system
concerned with the translation of a wide range of codes used
by disabled people, including the reverse translation to the
one described here, i.e., text into braille. This work will be
reported elsewhere.

II. THE BRAILLE SYSTEM

The braille code was adapted by Louis Braille in the early
part of the nineteenth century from a military system which
used raised dots to send messages at night. After competition
with other raised systems earlier this century [9], it has become

Manuscript received September 30, 1993; revised February 14, 1995.

The author is with the Department of Computation, University of Manches-
ter Institute of Science and Technology, Manchester, M60 1QD England.

IEEE Log Number 9410561.

1 ¢ @ 4

2 ¢ @ 5

3 e @ 6
Fig. 1. A braille cell

1 o o 4

2 e e 5

3 o e 6

Fig. 2. A “context specific” braille cell.

the main system for the majority of those blind people who
read and write using tactile means, and can be found in many
countries around the world. Braille uses the raised dots in
groups of six which are arranged in three rows of two, and
which are numbered from 1 to 6, as can be seen in Fig. 1.

These six positions, which can be raised or flat, are used
in combination to give just 64 different braille “characters.”
This clearly means that there cannot be a one-to-one corre-
spondence between braille characters and text. In the simplest
commonly used form, called Grade 1 braille, the lower case
letters A-Z and the major punctuation symbols are represented
by a single braille character, with “shift” characters being
used to indicate other information such as upper case, digits,
and italics. For several reasons, including the size of braille
characters (which are somewhat larger than normal text),
the size and bulk of braille documents (which have to be
embossed on rather thick paper), and the speed with which
people can read information using touch [10], a number of
countries have adopted a coding method, called Grade 2 braille
or contracted braille. This further complicates the Grade 1
code by introducing, in a manner which is often specific
to individual countries [11], context sensitive rules for the
contraction of words and frequently used letter groups. These
rules determine the correspondence between one or more
braille cells and the print, so, for example, in Standard English
Braille the braille symbol in Fig. 2 can stand for: “dis” when
used at the start of a word (distance); “dd”” when used in the
middle of a word (ladder); or a period when used at the end
of a word (stop.).

Other rules can further complicate matters by insisting
that the translation is not allowed across syllable boundaries.
For example, “th” will be contracted in “thin,” but not in
“shorthand.” In addition, a “letter sign” is used in braille to
clarify when a single braille character represents a single print
letter.

1063-6528/95%04.00 © 1995 IEEE

216 IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 3, NO. 2, JUNE 1995

TABLE 1
STATES, INPUT CLASSES, AND DECISION TABLE
FOR STANDARD ENGLISH BRAILLE TO TEXT

The decision table has 6 states and 7 input classes.
The States are:
1 ... At the start of the word.
2 ... In punctuation at the start of the word.
3 ... After the start of the word.
4 ... Within a number.
5 ... Within members of the group "&I(A)".
6 ... Within the scope of a Letter Sign.
The Input classes are:
1 ... Don't care.
2 ... Valid at the start of the word.
3 ... Valid in punctuation, or at the start of the word.
4 ... Only valid after the start of the word.
5 ... Valid for members of the group "&!(A)".
6 ... Valid within the scope of a Letter Sign.
7 ... Valid within a number.
The Decision Table is:
1230000
1030000
1004000
1000007
1000500
0000060

The majority of the rules for Grade 2 English braille are the
same around the world, however, several major differences
do occur in their detailed application [12], [13]. The two
main differences between British and American braille are
concerned with capital letters and syllabification. The capital
sign, which is the braille character with just dot 6 raised and
which is used to indicate that characters are capital letters, is
not commonly used in the U.K., whereas in North America it
is normally used. Although both British and American braille
have the rule whereby contractions should not be used across
syllable boundaries, American braille is found to apply this
rule more stringently. For example, the “of”” contraction would
be used in the word “professor” in the U.K., but not in North
America. (This may have something to do with how words are
pronounced in the “standard” form of English in the different
countries.)

It should be noted that the Grade 1 and 2 codes are used
for literary material. Additional codes have been developed for
mathematical and scientific work, for music, and in specialized
applications such as describing chess games.

III. COMPUTERIZED TRANSLATION OF BRAILLE

The earliest work on computerized translation of braille,
reported in a number of conferences [14]-[17], was primarily
concerned with the translation from text into braille so as to

TABLE II
RULE TABLE FOR STANDARD ENGLISH BRAILLE TO TEXT

1[1= 1 70'Sl="'s 2
1 ['MVS]=themselves 3 70'1: = 4
3[t)!: =the 5 7(')=, 4
S{!]1= the 5 60'1=, 2
1(!]=the 3 40']1=" 3
311 =" 1 3[('1=" 2
1 ["D)=day 3 1[1=" 2
1["E)=ever 3 3[()!: =of 5
1["F]l=father 3 S[(l= of 5
1 ["HAF] =hereafter 3 1[(}=of 3
1 ["H]=here 3 30)]!: =with 5
1 ["K]=know 3 5[)]= with 5
1["L]=lord 3 1[)])=with 3
1 {"M]=mother 3 3 [*N]=children 3
1 ["N)=name 3 3{*}: =child 3
1 ["OF)=oneself 3 1[{*]=ch 3
1 ["Ol=one 3 1[(+]=ing 3
1["P)=part 3 70.1= 1
1("Ql=question 3 6 [,,}=<SHIFT_WORD> 6
1 ["R)=right 3 6 [,)=<SHIFT_CHAR> 6
1["S]=some 3 4 [,N]=ation 3
1["T]=time 3 4(,Y)=ally 3
1 ({"U]l=under 3 6[,8]=" 2
1 ["Wl=work 3 3(,8]=" 2
1["Y)=young 3 30,7]1=(1
1["!]l=there 3 710,G): = grammes 3
1 ["*]=character 3 3(,G): =grammes 3
11 3 3 [.Gl#=grammes 3
1(":) 3 7[.,M): =metres 3
1{"\ 3 3[,M]: =metres 3
i(") 1 3 [,M] #=metres 3
7 [#1 4 7(,L]: =litres 3
6 [#] 4 3[,L): =litres 3
4 [#) 3 3[,L)#=litres 3
1(#' 4 1(,.,1="" 1
1(#] 4 1[0,)=" 1
6($) 3 T1--1=- 2
1($} 3 6 [2
1 (%D 3 1 3
3([%]: 3 1 2
6 (%] 3 1 2
11%] 3 7{-)=- 4
1(&/ 3 6{-1~: =- 6
3{&]!: =and 5 4(-1=- 2
5 [&] 5 3 [(-)=com 3
6 [& 3 1(-1=- 2
1(& 3 4 (.D])=ound 3
i 3 4 [.El=ance 3
1(3 4 [.N]=sion 3
[2 4[.S]=less 3
6 2 4 [.T)=ount 3
30 2 1[0.0=_ 1

assist in the automatic production of braille books. Although
some efforts have been directed toward the problems of
translating mathematical and musical texts [18], [19], the
majority of work in this field has dealt with the automatic
translation of literary material into braille. However, even
though some of the problems of translating literary material
into braille, particularly those concerned with syllabification,
placement of letter signs, and layout, have not been fully
resolved there are now many working and effective systems
available [20], [21].

Many of the earliest systems for braille production were
pragmatic compromises of an algorithmic approach and the
use of a dictionary [22]-[24]. They typically used a finite
state machine to determine whether to translate a potential
“window” of text into the corresponding braille characters
subject to certain right contexts, such as whether the “window”
was at the end or in the middle of the word. It is assumed that
most systems still adopt this approach although this is now
unclear since many have developed into commercial products
and so detailed data on algorithms and data have become
less readily available. Alternatives to this finite state machine
approach have been investigated, particularly by Slaby [25],

BLENKHORN: SYSTEM FOR CONVERTING BRAILLE INTO PRINT

TABLE I (Continued)

T/1%=/ 4 4 [6]=£f 3
70/): =st 3 6(6]=! 1
3[/]: =still 3 1[6]=! 1
61[/:)1=/ 6 1{7']=] 3
6[/]=st 3 6(7']=] 3
1[/]=st 3 2 (7] _=were 3
4([0']=" 3 3(7]1=(2
2 [0) _=was 3 1(7]1: =) 3
3[0)=by 1 6(7]: = 3
6[0]=" 3 6(7]=(2
1[0]): =" 3 4 [7]=gg 3
1[0]= 1 1171=(1
7(1) =, 4 1[(8'""]=" 2
71[1)= 4 6[8']=" 3
1[(1): = 3 1(8'): =" 3
6[1])=, 3 2 [8]_=his 3
4 [1l)=ea 3 3(8]=" 2
1(1)=, 1 6[8]: =2 3
3 [2C): =because 3 1(8]: =2 3
3 [2F]H=before 3 6[8]=" 1
3 [2F]: =before 3 1(8]1=" 1
3 [2H]H=behind 3 6 [99]=* 1
3 [2H] : =behind 3 1([99]=* 1
3 [2LL]: =belittle 3 3 [96]=into 1
3({2L]: =below 3 6 [9]=in 3
3 [2N]: =beneath 3 1(9])=in 3
3{2S8S]: =besides 3 3[:]: =which 3
3{28]: =beside 3 6 [:]=wh 3
3 [2T]}: =between 3 1([:])=wh 3
3{2Y]: =beyond 3 1(;61=+ 1

3 1(:_)=- 1

3 11{;8)=* 1

3 1{;41=/ 1

3 1(;7]== 1

1 4 [;El=ence 3
1 [3CVG]=conceiving 3 4 [;G]=ong 3
1 [3CV]=conceive 3 4 [;L}=ful 3
1 [3P#]=per cent 4 4 [;N}=tion 3
7 [3P]l= per cent 4 4 [;S]=ness 3
1 (3P]=per cent 3 4 [; T)=ment 3
1(3#]=: 4 4 [;Y)=ity 3
6(3]= 3 6(;]= 6
103): = 3 1{;1= 6
4 [3])=cc 3 6 [<l=gh 3
3[3]=con 3 1 [<]=gh 3
1[3]=: 1 6 [>]=ar 3
3 [4#]=dollars 4 1 [(>]=ar 3
7141 =. 3 1 [?YF]=thyself 3
6[4]= 6 3([(?]: =this 3
1[4): = 3 6 {?]=th 3
4 [4)=dd 3 1{?]=th 3
3 [4])=dis 3 6(@]=" 1
1[4]=. 1 l1[ey=" 1
3[5]: =enough 3 7 [A]=1 4
6 [5]=en 3 6 (A]l=a 6
1{S]=en 3 3 {ABV] =above 3
3[6]=to 1 3 [AB]: =about 3
1[6}: =t 3 1 [ACLY] =accordingly 3

whose segment translation system operates by considering left
and right contexts. He argues that the other approaches lead
to systems which are very difficult to adapt and update due to
the complications of state tables, control tables, and rules.

In addition to the above efforts in converting from text into
braille, there have been a number of systems which perform
the translation from braille into print [7], {21], [26], although
the strategies and algorithms adopted here are somewhat less
well-documented than for the early print to braille translators.
Again, many of these algorithms have become embedded in a
number of products including stand alone braille note-takers
(e.g., see [2] and [8)).

Several problems can be identified in the conversion of
braille into print, particularly to do with the context specific
nature of braille. For example:

e Unit abbreviations (e.g., 20 m, 44 yds, etc.) can be
ambiguous, although this situation hasﬁproved slightly
since the (U.K.) English rules changed and the abbrevia-
tions no longer appear before numbers in braille.

TABLE II (Continued)

[AC]): =according
[ACR]: =across
[AF])B=after
[AF]G=after
(AF-]=lafter-
(AFN])=afternoon
[AFW]=afterward
[AF]?=after
[AFIM=after
[AF]D=after

3 [AF]: =after

W W W wwWwWwww

7[E]1=5

6 [E]=e

3 [EI]: =either

3 [EX#]=ex

7 [EX]: = example

3 [EX]-=ex

3 [EX]: =example

7 [EXS]: = examples

3 [EXS]: =examples
1 [E4G4)=e.g.
3{E]): =every

3 [AG/]=against 1[El=e

3 {AG]: =again 7 [F)=6

3 [ALM): =almost 6 [F)=£f

3 [ALR]: =already 3 [F/)1=first

3 [AL]: =also 1 [FRS]=friends
3 [AL?]: =although 1 [FR)L=friend
3 [ALT]: =altogether 1 [(FR]): =friend
3 [ALW]: =always 3 [FT#]=feet
1[AdM4)=a.m. 7 (FT): = feet
3[A]!: =a 3 [FT]: =feet
5(a]l= a 3 {F#)=francs
1[A)=a 3[F): =from
7(B]=2 1[F)=f

6 [Bl=b 7(G)=7

3 {BLLY]: =blindly 6 [Gl=g

3 [BL]F=blind

3 [BL;S]: =blindness
1 [BL]M=blind

3{BL]): =blind

1 [BRL]=braille

3 [B): =but

1(Bl=b

7{C]=3

6 (Cl=c

1([C/0)=c/o

3 [CwW#)=hundredweight

7 {CW]: = hundredweight

3 [CW): =hundredweight
3 (CD]=could

3 {C#]=cents

3{C]: =can

1{C)=c

7 {D]=4

6 [D]=d

1 [DCVG] =deceiving

1 [DCV]=deceive

1 [DCLG}=declaring

3 [DCL]) =declare

3 [DM#]=dm (Deutch)
3 [DM]}: =dm (Deutch)

7 [DM]: = dm (Deutch)
3 [DG#]=degrees

7 [DG): = degrees

3 [DG): =degrees

3 [D#) =pence

3[D]): =do

1 [D]=d

WP WWEWWBWWWWARWWAWWWAWARWWWWWWWWOARAWNNUWWWLWWWWWWWWWWRWR, WWWW

3 [GD) =good

1 [GRT]=great

3 [GL#]=gallons

7 [(GL): = gallons
3 [GL]: =gallons

3 [G#]=guineas
3[G): =go

1[Gl=g

7 [H]=8

6 [H]=h

3 [H}F]}=herself

3 [HMF)=himself

3 [HMM] =hmm

3 [HM] =him

3 {HR#]=hours

3 [HR]: =hours

3 [H): =have

1 [H]=h

7(1I]=9

6 ([T]=1

1 [IMM;S]=immediateness
1 [IMMLY]=immediately
3 [IMM] =immediate
1 [I4E4]=i.e.

3 {I#]=inches
1[1)=1

217

AWWOADWUPAWWUWWARWWWEWWWWABWWAWWEREWWARWWALVWALRWWNWADRWWWWWWWWR WS

+ Initials in names (e.g., Mr. K. Smith) are written without

a letter sign.

» The same braille sign is used for the oblique stroke (/)

and the letter group “st.”

IV. THIS SYSTEM

The general purpose system, of which this braille to text
system is a special case, has been developed to operate with a
finite number of states which can hold the current context as
well as capabilities for both left and right context matching. In
the application of this system to the conversion of print into
braille (which will be reported elsewhere), the approach taken
is closer to Slaby’s [26] of using left and right contexts than
that of a state system. However, this system, which converts
from braille into print, uses the finite state system to hold the
current context with right context checking being achieved by
using matching algorithms. The reason for using the finite state
approach for the “left context” was that it is no simple matter
to do a character/wildcard matching operation to determine

218 IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 3, NO. 2, JUNE 1995

TABLE 11 (Continued) TABLE 1II (Continued)

3 [KC/S#]=kilocycles per 6 [P]=p 6 1[Vi=v 3 1[\]=ou 3
second 4 1(PD): =paid 3 6 [W]=w 6 1 [~U)=upon 3
7 [KC/S]: = kilocycles per 1 [P}CVG)=perceiving 3 3 [WD] =would 3 1 ("W]}=word 3
second 3 1 [P}CV]=perceive 3 3(W): =will 3 1[~!]=these 3
3 [KC/S): =kilocycles per 1 [P}H] =perhaps 3 1 (W)=w 3 1[~?]=those 3
second 3 3 [PT#]=pt 4 6 [X1=x 6 1[~:])=whose 3
1 [KC#]=kilocycles 4 3[PT): =pt 3 3[XS]: =its 3 1
7 [KC]: = kilocycles 3 3 (P>#]=paragraph 4 1 [XFl=itself 3 3
3 [KC]: =kilocycles 3 7{P>]: = paragraph 3 3[X]: =it 3 3
3 [KW#]=kilowatts 4 3 [P>]: =paragraph 3 1[X]=x 3 3
7 (KW): = kilowatts 3 1[P4M4]1=p.m. 3 6 [Y]l=y 6 3
3 [KW]: =kilowatts 3 3 [P#]=p. 4 1 [YRF]=yourself 3 3
3 [K]: =knowledge 3 3 [P]: =people 3 1 [YRVS] =yourselves 3 3
1 [(K]l=k 3 1{P)=p 3 3 [YR] =your 3 1
3 [L#)=f 4 6 [Ql=q 6 3 [YD#]=yards 4 1
6 {L]=1 6 1 [QT#]=quarts 4 7[¥YD): = yards 3 3
3 [LR]=letter 3 7 [QT]: = quarts 3 3 [YD): =yards 3 3
3 [LL]A=11 3 3 [QT]: =quarts 3 3[Y]: =you 3 3
3 [LL]E=11 3 1 [QR#] =quarters 4 1(Y]=y 3 5
3 (LL)I=11 3 7 {QR): = quarters 3 6[2]=z 6 S
3 [LL]O=11 3 3 [QR]: =quarters 3 3[(z]: =as 3 3
3 [LL]U=11 3 1 [QK]=quick 3 1(2z)=z 3 3
3 [LL)=little 3 3(Q): =quite 3 1 [\RVS]=ourselves 3 3
3 [LB#] =pounds 4 1[Ql=q 3 3[\1: =out 3 3
7 [LB]l: = pounds 3 6 [R]=r 6 6 [\]1=ou 3
3 [LB]: =pounds 3 1{R414P4]=r.i.p. 3
3{L]: =like 3 1 [RCVG]=receiving 3
1[(L]=1 3 1 [RCV]=receive 3
6 [M]=m 6 1 [RICG]=rejoicing 3 3 . o
1 [M*]=much 3 1 [RIC]=rejoice 3 Note: A nonzero value in the decision table indicates that a
1(M/]=must 3 3 [R#]=rupees 4 « . . .
1 [MYF)=myself 3 3[R]: =rather 3 rule should “fire” for a given input class and current_state. A
3 [MN#]=minutes 4 L[R)=r 3 value of zero indicates that the rule should not “fire.”

(MN]: =minutes 3 6 {S]=s 6
3 [MC/S#]=megacycles per 1[(SD}: =said 3
second 4 1(S*]: =such 3
7[MC/S]): = megacycles per 3 (ST#]=stones 4 V. RESULTS
second 3 7 [ST): = stones 3 L.) X
3[MC/S): =megacycles per 3 [SE#]=seconds 4 The rules for the transcription of Standard English Braille
second 3 3 [SE]: =seconds 3 . .
3 [MC#) =megacycles 3 3 [S#]=shillings 4 are listed in Table II.
7[MC]): = megacycles 3 3[(S'#l=section 4 Notes:
3 [MC]: =megacycles 3 3([S): =so 3 e
3 (M#]=miles 4 1[S)=s 3 . 1 ier
30M): orore 3 6 7] oc p The format of the rules in Table II is: Input class (TAB)
L EM% =m 3 3 [1D) ~today 3 rule (TAB) new_state

N}=n 6 TGR] =together
1[NEC]: =necessary 3 3 {Tﬁ]’:wmgmw § The input class is set for each rule and is used in
3 [NEI): =neither 3 3 [TN] =tonight 3 3 o H e 4 i
1 [NEWSLR] novosotter 3 3 [T rons ; conjunction with the decision table to determine if a rule
3[N]: =not 3 3[T]: =that 3 “fires.”
1 [N]=n = .. .
6 {o;:o 2 § {EILKZ]:U,K, 2 The rule is in the format: [focus]right_context = out-
3 [OZ#]=ounces 4 6 [Ul=u 6
7 {0Z]: = ounces 3 3 [Ul: =us 3 pUt"teXt . . .
3(0z]: =ounces 3 1[U]=u 3 Several wildcards can be used in the right_context.
3[0'Cl: =o'clock 3 6 [V]=v 6 .
1[0]=0 3 3(V]: =very 3 These are:

oy

-one or more of the set “&!(A).”

-any white space character.

~ 7 ---oneormoreroman letters (e.g. I, IV, MCM).

- zero or more potential punctuation characters.
-actual space character.

IR

whether the previous character is, for example, a letter group,
punctuation character, etc. (Whereas in print the character “.”
is always a period, the braille character used for a period could
represent a number of possibilities.) -

One of the aims of this system was to provide the facility

Any characters which are not in the tables go through the

whereby braille to print conversion could be achieved for a system and result in the new_state being set to 1.

wide range of languages [11], and although there is some * The character “"” is used in the output of this system to
uncertainty as to whether the system will cope with the indicate that a character should be converted to uppercase
complications of German braille as described by Seiller and and that when used twice the “ " ” indicates that the
Oberleitner [26], it is anticipated that this will be achieved for following word should be converted to upper case.

a considerable number of languages. As a result, the system * This algorithm should work for the braille codes used in
has been designed so that a wide range of options and data can the UK. and North America as the differences between
be input using a set of tables, including braille rules, which are the British and American codes (for example, the two
presented in a clear manner. It is intended that this will ease ways to contract the “of” in professor) will both result in
the difficulties associated with the enhancement and updating the same print output from this system.

of existing tables for particular languages, and will facilitate * The system used to represent the braille characters in

the production of translators for new languages. ASCII format is American Computer Braille.

The algorithm used for the conversion can be found in To illustrate how these rules work, the word “adds” is consid-
the Appendix. Table I shows the decision table used for the ered. The braille equivalent is shown in Fig. 3. In American
conversion of Standard English Braille. Computer Braille the word is: A4S.

BLENKHORN: SYSTEM FOR CONVERTING BRAILLE INTO PRINT

® O o O
o O e o
o O o e

® 6 O
o O e

Fig. 3. The braille words “adds.”

The main points involved in its translation are now detailed:

The system will search through the tables starting with
the entry: 7 [A]=1 4. The focus matches for [A] and so the
state is checked for input_class 7 and current_state 1. The
decision table has a 0 and so the system goes to the next rule:
6 [A]=a 6.

Similarly, the decision table has 0. The next rule is:
3 [ABV]=above 3. Here, the focus (i.e., ABV) does not
match and so the rule does not fire. The system continues to
the rule 1 [A]=a 3. This matches and the decision table entry
for input_class 1 and current_state 1 is 1. The right_context
of the rule is blank and so the rule fires, the right-hand side
of the rule (i.e., “a”) is output, the current_state is set to 3
(i.e., after the start of the word) and the system moves one
character along the braille word, leaving “4S.”

The system now searches starting with the entry:
3 [4#f] =dollars 4. The focus does not match. The next
rule is: 7 [4]=. 4. The decision table entry is 0 for the
input_class 7 and current_state 3. The next rule (6 [4]=. 3)
also fails to satisfy the decision table. The next rule is:
1[4): =. 3. The focus matches, the decision table for
input_class 1 and current_state 3 is 1, and so the right context
is checked. The right context of the rule is “: "~ which
can be interpreted as looking for a space (i.e., the end of
the word) after zero or more characters which are “potential
punctuation characters.” The input buffer has an “S” to the
right of the “4.” “S” is not a potential punctuation character
and so the rule fails. The next rule is: 4 [4]=dd 3. The
focus clearly matches and the decision table for input_class 4
and current_state 3 is 4, and so the right context is checked.
The right context of the rule is blank and so the rule fires,

219

the right-hand side of the rule (i.e, “dd”) is output, the
current_state is set to 3 (i.e., after the start of the word),
and the system moves one character along the braille word,
leaving “S.”

Similarly the rule: 1 [S]=s 3 will fire for “S” giving the
total output “adds,” as required.

The system detailed here has been tested on a set of Standard
English Braille words which were designed to test all of the
rules found in the Braille Primer [27]. In addition, extensive
tests have been carried out with braille files which were
produced by Torch Trust for the Blind.

Overall the system performs well on contracted English
Braille. However, there are a number of problems which have
been identified:

» The poetry sign is not dealt with in a satisfactory manner.

It is currently converted as the contraction “ar” which is
represented by the same braille character.

* Specialist biblical references containing chapters of the
bible and verse numbers are not converted correctly.
(However, this is simply a matter of adding the biblical
names to the main tables for the system.)

« Some of the old style unit abbreviations are not converted
correctly.

 Punctuation within words can cause problems. For ex-
ample, the system cannot distinguish between the braille
equivalents of “adds.” and “a.s.” and would convert both
into “adds.”

» The oblique stroke “/” is not always converted properly
when it occurs in the middle of a word.

* Isolated letters without letter signs (for example, the
braille equivalent of “Mr. M. Jones”) are not converted
correctly.

VI. CONCLUDING REMARKS

Although the system described here performs quite well, it
is intended to test and develop the system further by attempting
to produce further tables for the conversion of braille into print
for languages other than English.

APPENDIX
THE CONVERSION ALGORITHM
The algorithm is described below using Structured English.

program convert
begin
do
read_word
convert word into normal form

convert_braille_into_print
while not end_of_input
end // of main program

procedure convert_braille_into_print
begin
set current_state to 1

// use table to convert lower to upper case.
// tidy up graphics characters etc.

// turn braille word into print

set current_character to first character in word

while still converting do
begin
set match to FALSE

// do the whole word

// initialize for the loop

start search in rule table at rule defined by current_character

220 IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, VOL. 3, NO. 2, JUNE 1995

repeat
if focus_matches and state_ok and right_context_ok
and left context_ok then // left context not used for braille to text

begin
output right-hand side of rule // i.e., the text after the equals sign
set current._state to new_state // get new state from end of the rule
move along word by size of current rule focus
set match to TRUE

end

else go to next rule

if not match

and new rule does not start with same letter as current_character then

begin // no more rules for that character
output current_character /I so use default option
set current_state to 1 /I and output braille character
set match to TRUE
end
until match // keep going round until done current character
set current_character to first character in word
end /1 while still converting—keep going until done whole word

end // of convert braille into print

function focus_matches
begin
set match to TRUE
set input_index to index into input_buffer position for current_character
set rule_index to index start of focus for rule
do
if input_buffer{input_index] != rule[rule_index] then // not got a match
set match to FALSE

increment rule_index /l move along rule
increment input_index /l move along input
while match and (rule[rule_index] != “]”) // Note: “]” terminates focus

return match
end // of focus_matches

function state_ok
begin // nonzero entry fires state
if decision_table[input_class of current rule, current_state] > O then
return FALSE
else
return TRUE
end // of state_ok

function right_context_ok

begin
set match to TRUE
increment input_index // step over “]”
do
if rule[rule_index] is a wildcard then [/ R VAL i
begin
if not valid_wildcard_match then
/I Note: this will move along input buffer
set match to FALSE /I and increment input_index appropriately
else do wildcard match
end
else
begin
if input_buffer[input_index] != rulefrule_index] then // not got a match
set match to FALSE
increment input_index // move along rule
end
increment rule_index // move along input

while match and (rule[rule_index] != TAB) // Note: TAB terminates

// right hand context of rule
return match
end // of right_context_ok

BLENKHORN: SYSTEM FOR CONVERTING BRAILLE INTO PRINT

ACKNOWLEDGMENT

Thanks are due to Torch Trust for the Blind who have helped
in providing some of the data files for testing this system.

(1]

[10]

{11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

P. L. Blenkhorn, “Personal transcription systems,” in Computerised
Bruille Production. The Proceedings of the Fifth International Workshop,
Winterthur October 30-November 1, 1985, 1. M. Ebersold, T. Schwyter,
and W. A. Slaby, Eds. Eichstatt: Katholische Univ., 1986, pp. 33-38.
D. Blazie, “Braille ‘N’ speak: A story, an update,” Braille Monitor, pp.
174-176, Apr. 1988.

J. D. Leventhal, E. M. Schreier, and M. M. Uslan, “Electronic braille
displays for personal computers,” J. Visual Impairment Blindness, vol.
84, pp. 423-427, 1990.

A. Meyers and E. Schreier, “An evaluation of speech access programs,”
J. Visual Impairment Blindness, vol. 84, pp. 26-38, 1990.

N. Davies, “Computers at work: Making computers work for you,” New
Beacon, vol. LXXV(887), pp. 202-204, 1991.

A. T. Vincent and S. Smith, “A talking brailler,” in Learning to Cope.
London: Educational Computing, 1983, pp. 33, 35.

J. Spragg, “Interfacing a Perkins brailler to a BBC micro,” Micropro-
cessors Microsyst., vol 8, pp. 524-527, 1984.

M. Priwler, “Eureka A4: The arrival of a new concept,” Braille Monitor,
pp. 164-167, Apr. 1988.

W. Bledsoe, “Braille: ‘A success story,”” in Evaluation of Sensory Aids
for the Visually Handicapped. Washington, D.C.: National Academy
of Sciences, 1972, pp. 3-36.

E. Foulke, “Reading braille,” in Tactual Perception: A Sourcebook, W.
Schiff and E. Foulke, Eds. Cambridge: Cambridge, 1982, pp. 168-208.
World Braille Usage. UNESCO, Paris: The National Library Service
for the Blind and Physically Handicapped. Washington, D.C.: Library
of Congress, 1990.

British National Uniform Type Committee, A Restatement of the Layout,
Definitions and Rules of the Standard English Braille System, Issued by
the British National Uniform Type Committee, 1952. London: Royal
National Institute for the Blind, 1955. Revised 1968, published 1969.
American Association of Workers for the Blind and Association for
the Education of the Visually Handicapped, English Braille, American
Edition 1959. Louisville, KY: American Printing House for the Blind,
1970. Revised 1962, 1966, 1968, 1970.

R. A. J. Gildea, G. Hubner, and H. Werner, Eds., Computerized Braille
Production: Proceedings of the First International Workshop in Munster
(Germany), March 1973. Munster: Rechenzentrum Univ. Munster,
Dec. 1974.

H. Werner, Ed., Computerized Braille Production: Proceedings of the
Second International Workshop in Copenhagen (Denmark), September
1974. Munster: Rechenzentrum Univ. Munster, June 1978.

J. M. Ebersold, T. Schwyter, and W. A. Slaby, Eds., Computerised
Braille Production. Proceedings of the Fifth International Workshop,

[17]

(18]

[19]

[20)

[21]

[22]

[23]

[24]

{251

[26]

[27]

221

Winterthur October 30-November 1, 1985. Eichstatt:
Univ., 1986.

G. Francois and J. Engelen, Eds., Computerised Braille Production.
Proceedings of the Sixth International Workshop on Computer Applica-
tions for the Visually Handicapped, September 19-21, 1990. Leuven,
Belgium, 1990.

T. Wesley and J. Wallace, “The application of information technology to
the access of mathematical information for the blind,” in Proc. 3rd Int.
Conf. Comput. Handicapped People, Vienna, pp. 562-569, July 7-9,
1992.

J. B. Humphries, “Computerised braille music production using CIM-
BAL,” Braille Res. Newslett., no. 10, pp. 6-15, 1979.

A. M. Goldberg, E. M. Schreier, J. D. Leventhal, and J. C. De Witt,
“An evaluation of braille translation programs,” J. Visual Impairment
Blindness, vol. 81, pp. 487-492, 1987.

“Braille and computers,” in Aids and Appliances Review, no. 11.
Carroll Centre for the Blind, Winter 1984.

E. Sullivan, “Braille translation,” in Uses of Computers in Aiding
the Disabled, J. Raviv, Ed. Amsterdam: North Holland, 1982, pp.
351-366.

H. Wemer, “Automatic braille production by means of computer,” in
Uses of Computers in Aiding the Disabled, J. Raviv, Ed. Amsterdam:
North Holland, 1982, pp. 321-336.

P. A. Fortier, D. Keeping, and D. R. Young, “Braille: A bilingual
(French/English) system for computer aided braille translation,” in
Research Report 2. Winnipeg: Univ. Manitoba, 1977.

W. A. Slaby, “Computerised braille translation,” J. Microcomput. Ap-
plicat., vol. 13, pp. 107-113, 1990.

F. P. Seiler and W. Oberleitner, “WineTU: German language grade 2
to ASCII braille translator,” J. Microcomput. Applicat., vol. 13, pp.
185-191, 1990.

Royal National Institute for the Blind, Braille Primer with Exercises,
Based on the Restatement of Standard English Braille. London: RNIB,
1969.

Katholische

The

Paul Blenkhorn was as a Research Fellow at the
Research Centre for the Education of the Visually
Handicapped, Birmingham University (England).
He has been involved in assistive technology for
a little over 10 years. He was one of the founders
of Dolphin Systems for People with Disabilities
Ltd., which developed, manufactured, and marketed
a range of assistive devices for disabled people.
For the past three and a half years, he has been
a Lecturer in the Department of Computation at
UMIST and a member of the Technology for Dis-

abled People Unit there. His research interests remain in the application of
technology to meet some of the needs of disabled people.

