

Duxbury Systems, Inc.
P.O. Box 1523
Duxbury, Massachusetts 02332
U.S.A.

August 11, 1976

DS-JES-760811

Summary of Changes to Duxbury Braille Translation System

Release 8/9/76

Translator

Fixes

1. Spurious fill characters should no longer appear at the beginning
of occasional paragraphs.

2. Tab stop setting control symbols ($stb...) should now be recognized
properly.

Enhancements

1. The control symbol $HDS has been extended to allow conditional
page eject before the first line of the heading, unless at least
n lines will be left on the current page after the first line of
the heading. The number of lines required is attached directly
to the $HDS symbol, e.g. $hds10. If no number is given, 1 is
assumed. The operation of the present $HDS symbol is realizable
by $hds0.

2. A new control symbol, $CTB, has been added. This symbol clears
all tabs, i.e. all the stops are set to right-adjust at the far
right of the page. Thisshould make it easier to use the automatic
tab feature for table layouts by providing a single means of
removing unwanted current tab settings, including the initial
settings.

3. A centering tab type has been added to the existing left-, right-,
and decimal-point alignment types. The designator C may be used
wherever L, R, or D may be used (i.e. in $STB, $TAB or #n controls),
the meaning being that words so tabbedfare aligned with centers
falling on the specified column.

4. The Translator will now ask for an output file for remarks; the
file name or channel number should be specified in the usual
way. This file will receive a copy of the remark (exception
message) output as on the main console ($TT0). If the channel
number -1 is given, no such file will be written.

5. A new exception message of the form
OP xxx NEAR IAL xxxx

will now be generated each time the translator starts on a braille
page divisible by 10. As with the other messages, OP means
’’output page”, IAL "input absolute line." With 25-line,
40-character-wide pages, this message should appear about every
1 1/2 minutes, or every 200 input lines. Its purpose is to serve
as reassurance at the console that the Translator is running, and
an indicator of progress; in the auxiliary message file, the

-2- DS-JES-760811

message will serve as a braille vs. input cross-reference index.

6. A new error message, "CHAR. OUTSIDE RANGE”, has been added in
place of the (misdocumented) "EXCESS CHARACTER IGNORED" message.
This latter message’s meaning should be altered in the document;
it actually implies that an excessively long word (group of con­
tiguous nonblank characters) has been encountered in the input,
and that characters beyond the 40th in such a sequence have been
ignored.

7. The control symbol $PTYS (poetry start) has been extended to allow
specification of the runover line indentation amount. Ihe number
of spaces to be left blank is specified by a number attached to
the symbol, e.g. $PTYS4. If no such number is given, 2 is assumed,
corresponding to the present $PTYS symbol. Note that, unlike
$tls ... $tle and $hds ... $hde, $PTYS and $PTYE symbols need not
necessarily occur in pairs. In fact, $PTYE is equivalent to
$PTY0. Thus successive $PTYSn symbols may be used to vary the
runover line indentation amount. This facility, together with the
$INDn symbol (whereby all lines^ i.e. the left margin, may be
indented) permits different combinations of indentation for many
purposes besides poetry. Program logic schematics, for example,
with subordinate clauses indented varying amounts to indicate
depth of nesting, come to mind.

8. The number of braille lines per page has been arbitrarily limited
to 100, to guard against accidentally setting up so that an
unreasonable number of empty lines could be generated in response
to a $PG (new page) command.

Editor Enhancements

1. A new program, DEPRIN, has been added for quick printing of files
produced by W/to be used by the Duxbury Editor. It is initiated
by the CLI command DEPRIN. It asks for a free channel to use for
reading the file(s) to be printed. (It seems unfortunate to raise
the concept of a channel to the user level, but this seems safest
in the presence of uncertainty over how separated the foreground
is from the background.) It then asks for the file name, to be
entered in the usual way. Any open errors are reported; otherwise
the file is printed just as by DEDIT except that the word PRINTED
appears to the left of the date in the heading. Ihe program then

asks for another file, and so forth until the operator responds
".." to the name request, whereupon the program quits.

2. Ihe file mode is now printed at the head of the line-numbered listing
by both DEDIT and DEPRIN, and moreover the mode is passed as the first
argument in calls to DEPL, the print-line subroutine. DEPL1, the
version of DEPL used for upper-case-only printers not capable of

-3- DS-JES-760811

overstriking, has been modified so as not to print upper case indicators
below the lines of a mode 1 (u.c. only) file.

EPROOF Enhancement

1. EPROOF will now ask for the number of lines per braille page.
(Previously, 25 was assumed.)

Table Changes

1. An L class character (letter or equivalent) is now required as
right context to the space after "to" and "into" as well as "by"
before these words will be contracted and brought up against the
words following them.

2. A period followed by a space is now always interpreted as a period
in braille, even when following numbers.

3. The word "insofar" should now translate correctly.

4. No space should follow the opening quote that is automatically
added at the beginning of paragraphs within quoted material.

THE DUXBURY EDITOR USER'S MANUAL

DS-D8561-0

Ordering No. DS-D8561
Supersedes: DS-JES-76070il

(C) Duxbury Systems, Inc., 1978
123 Lowell Drive
Stow, Massachusetts 01775 USA

All Rights Reserved

NOTICE

Duxbury Systems, Inc. (DS) has prepared this manual for use by
personnel, licensees and customers. The information contained
herein is the property of DS and shall be reproduced neither
in whole nor in part without DS prior written approval.

DS reserves the right to make changes without notice in the
specifications and materials contained herein and shall not be
responsible for any damages (including consequential) caused
by reliance on the materials presented, including but not lim­
ited to typographical or arithmetic errors.

Original Release May, 1978

Written for Duxbury Systems, Inc. by Joseph E. Sullivan

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

SCOPE OF APPLICATION 1

OPERATIONAL CONCEPT 1

METHOD 3

2 USAGE 4

PRINCIPLES OF OPERATION 4

Input-Output Interface 4
Edit Cycle 5

COMMANDS 6

Line Numbers 6
Command Words 6
Command Formats 7
Command Descriptions 8

Accept 8
Disjoin 8
End 8
Get 9
Join 9
Map 9
Put 10
Replace 10
Summon 11
Type 11

Remarks and Error Messages 12

3 TECHNICAL INFORMATION 14

CALLING THE EDITOR 14

PARAMETER SETTING FROM THE TERMINAL 15

"CRASH” RECOVERY 15

EXPANDABILITY 16

SUBROUTINES CALLED 16

APPENDIX A DEPRIN UTILITY A-1

-1-

1. INTRODUCTION

SCOPE OF APPLICATION

The Duxbury Editor is a general-purpose program for creating
and altering files containing source code, natural language text,
or any similar source data. It is "line-oriented"; that is,
the basic unit of reference for operations on the file is a
group of characters terminated by a carriage return. Text may
be upper-case only (e.g., most source program files) or mixed
case (e.g., English text). The console device used to run the
Editor may be upper-case-only (e.g., a typical teletype) or
a mixed case terminal. Either type of file may be edited from
either type of terminal. A previously-prepared file may also
be used to supply commands to the Editor instead of a console
terminal, if desired.

The Editor is designed as a reentrant subroutine, which means
that it can readily be used in multitasking situations-- for
example where editing is to take place simultaneously at several
terminals.

OPERATIONAL CONCEPT

The Editor operates directly upon a direct-access file, that
is, a disk-resident file in which individual lines may be
accessed easily in any order. There is one such direct-access
file for each body of text to be edited. These direct-access
files are in a special format not generally used by programs
other than the Editor itself, however. For this reason, the
Editor provides a facility for converting easily
from direct access to sequential form and vice versa. Sequen­
tial files permit lines to be accessed conveniently only in
order; however, they are the most common type of file used and
may reside on many media (e.g. magnetic tape, paper tape)
besides disk.

Thus the user typically creates a file initially in direct
access form, and converts it to a separate sequential file for
use. If changes are then found to be required, the original
direct access file may then be edited and reconverted to a
sequential file, superseding the old. This cycle may be repeated
as often as necessary, although typically it will be found
desirable to go the other way and reconstitute the direct access
file from the sequential file (principally to "clean up" the
line numbers, as will be seen) -- at least on occasion. The
approach of having two essentially equivalent files extant has
the advantage that they act as mutual backup, although of course
disk space suffers as a result. Usually, once a file has become
stable, the direct access file is deleted and set up again only
temporarily for editing as necessary.

-2-

When a new file is to be created, the user simply enters lines
after giving the ’’accept" command. (The commands are described
in detail in a later section.) When an old file is to be al­
tered, the user is presumed to be working from a line-numbered
listing of the current file with edit markings, or at least a
marked-up plain listing supplemented by a line-numbered listing
for ready comparison. It is possible, by using the "replace"
command for searching, to locate text without knowledge of the
corresponding line number; this is not, however, an efficient
technique for extensive editing, either from the computer’s
standpoint or from the user's. A line-numbered listing for
a direct-access file can be obtained by directing a "put" command
to the line printer. The utility DEPRIM (described in appendix
A) can be used to obtain a line-numbered listing of a sequential
file. Note that line numbers are for reference purposes only
and are not part of the text data itself (although it is possible
to make the direct-access file numbers part of the sequential
file data, if desired).

The user refers to the lines he wishes to alter, delete, insert
or move about by line number. For example, the command

15 to 20 replace Tom by Harry

would alter lines 15 through 20 in such a way that wherever the
three-character sequence "Tom" used to appear "Harry" will appear
instead. As long as a particular direct-access file is used,
the original line numbers are preserved in their relationship
to the data itself, even though lines are deleted or groups
of lines are moved about, so that it remains easy to refer to
the text working from the marked-up original listing. Any new
(inserted) lines are serially assigned new numbers, regardless
of the position in which they are inserted. The net effect of
these policies is that line numbers, which are originally in
order, may become quite out of sequence as the editing pro­
gresses. The Editor keeps track of the true sequence of lines
by a "map," e .g .:

12-93
199-213
1-11
214-234

which would define the line sequence to be:

12, 13, 14, ... 92, 93, 199, 200, ... 212, 213, 1, 2,
3, ... 10, 11, 214, 215, ... 233, 234

This map is available to the user at all times to aid in locating
lines, although if the user is working from a line-numbered list­
ing the line numbers are simply names whose numerical value is
of little consequence. Conversion to sequential file form and
back again has the effect of renumbering the lines. This is
necessary when the map becomes too long (i.e. has too many dis­

-3-

continuities) for the Editor’s capacity, and may well be desir­
able before that point, depending on the use being made of the
line numbers.

METHOD

The Editor assigns each line to a particular 128-character
(1/M disk block) area in the direct-access file, the position
of which area is a simple function of the line number. The
line sequence is defined by the map, as explained above, which
is kept in the first few file records. Thus the lines them­
selves are never moved, and many operations (such as deletions)
are accomplished simply by manipulating the map.

In addition to current lines in the file, the last set of lines
removed by a "disjoin" command is "remembered" in a separate
part of the map, against the possibility that the user will
"join" them to the set of current lines. Including these
remembered lines, there may be at most 62 continuous blocks
of lines in the map at one time. (The Editor automatically
erases spurious discontinuities, as for example when a block
beginning with line 12 is joined after a block ending with line
11.) The dead space occupied by lines that have been disjoined
and not rejoined is not reused for other lines. This has the
disadvantage of wasting file space but the advantage that a
command, i.e. "summon," can bring back to life lines that have
been deleted in error.

11

2 USAGE

PRINCIPLES OF OPERATION

Input-Output Interface

The Editor is a FORTRAN subroutine to be called with certain
parameters to determine its mode of operation, as explained
more fully under "Calling the Editor." Among other things,
these parameters determine four 1-0 channels that will be used
by the Editor as follows:
(1) terminal output, i.e. prompting for console terminal input

data and commands, and responses to commands (e.g. error
messages);

(2) terminal input, e.g. commands;
(3) the direct-access file; and
(4) sequential file(s).

It is possible to assign channel (2) to a disk or other file
containing prestored commands to drive the Editor. Normally,
however, (1) and (2) refer to the same "live" terminal; the
rest of this description will assume that this is the case, as
the Editor was primarily designed for such interactive use.

With allowance for the presence of line numbers and possible
breaking of the line because of terminal width, the relation­
ship between the line as it appears in the file and as it appears
on the terminal is direct, i.e., a simple copy, if the modes
(upper case or mixed) are the same. If the file is upper-case=
only and the terminal is mixed, then output (from the file to the
terminal) will be upper case but either case may be used for
input: lower case letters will be converted to upper case.
In the reverse mismatch situation, lower-case letters in the
file are represented as simple upper-case letters on the ter­
minal and upper-case letters and slashes (/) in the file are
represented on the terminal as a slash followed by the charac­
ter, on both input and output. For example:

Terminal File

AB
A/E
A//E
A///B
A////B
A/////B

ab
aE
a/b
a/B
a//b
a//B

(On input, a slash preceding a character other than a letter
or slash is simply ignored.)

-5-

Edit Cycle

The Editor performs the following operations in sequence:

(1) The Editor announces itself with the caption

DUXBURY EDITOR 7/77
ARGS ...

where ... represents the arguments passed to the Editor
by call (see "Calling the Editor"). These values are
usually not of interest to the terminal operator, unless
he wishes to check that the right characteristics have
been assigned to his terminal .

(2) If any of the argument values are out of valid range, the
editor will ask for them to be supplied from the terminal,
as explained under "Calling the Editor." Again, this
would not normally be required of the terminal operator.

(3) The Editor asks for the direct-access file name:

FILE?:

This illustrates the general practice of putting out
"?:" whenever a user response is required. A response
to a question of this sort is always a sequence of char­
acters without any embedded blanks (except for commands),
followed by a carriage return.

The response in this case should be the name of the direct
access file to be edited; it need not pre-exist. The
format of the name is as prescribed by the operating system.
If the file does not pre-exist, the Editor will issue
the comment

* NEW FILE

When all files have been edited, the special response

to the "FILE" question will cause the Editor to return
to the calling program.

(4) The Editor then asks:

FILE MODE?:

The response should be 1 for upper-case-only files,
2 for mixed case files.

-6-

(5) The Editor then accepts commands, preceding each by simply

? :

The ’’end" command will break this cycle, cause the
file to be closed, and return to the ’'FILE” question
(3) for another file or to close out operation of the
Editor .

COMMANDS

Line Numbers

As was previously noted, line numbers are artificial tags
attached to the data lines for identification purposes only.
Although sequentially assigned originally, these numbers may
no longer be in sequence in relation to the logical sequence
of the lines after a series of moves and insertions. When
addressing a line or lines for command purposes, either of the
forms

x to y

or

x

may be used, where x and y represent numbers and the latter
form is always equivalent to

x to x

In some commands, it may be meaningful to reference a dummy
line preceding all lines in logical sequence. This dummy line
always the line number 0.

Unless noted otherwise in the command description, line numbers
X and y must both be current lines (or 0 where meaningful) and
y must logically follow x in the file (though it may be
numerically less than x).

The special words FIRST and LAST may be used, respectively,
in place of the logically first and last line currently in
the file.

Command Words

In the description that follows, the term "quote" refers to the
double quote sign (") and the term "doubled quote" refers to
two of these in succession ("").

-7-

All ’’words” in commands have one of two forms:

(1) a character other than a blank or quote followed by
zero or more non-blank characters (i.e., up to the
next blank);

(2) a quote, followed by zero or more characters up to the
next quote that is not doubled. Quotes within the
word are doubled.

In the first case, the ’’word" is the entire string of characters;
in the second, the word is the string with the initial and final
quotes deleted and any interior quotes undoubled.

Within a command, any word -- command name, data word or line
number -- may be expressed in either form unless it is null
(consists of no characters) or has embedded blanks or quotes.
In the latter case, the second, quoted, form must be used. As
a practical matter, only data words (as in the "replace" command)
would need to be quoted, e.g.:

15 to 20 replace "to and fro" by ""

would simply delete the characters "to and fro" wherever they
appeared in lines 15 through 20.

Command Formats

Commands are given by typing one or more command words, separated
by one or more blanks, on a single line. Words beyond those
needed to specify a command are generally ignored, although no
more than than eight words are permitted.

In the descriptions that follow in the next section, brackets
are used to surround words or word sequences that may or may not
appear; e.g. line numbers, already described, are usually in the
form

nl [TO n2]

A comma within brackets denotes that either or neither (but not
both) options may be selected, e.g.,

[LISTED, UNLISTED]

Both keywords (such as LISTED and TO, above) and command names
may be abbreviated to their first two letters only, and either
upper or lower case may be used in entering them although upper
case is used th the descriptions. Lower-case n’s and d’s, either
of which may be subscripted for distinction, are used in the
descriptions to stand for line numbers and data words respect­
ively. The case of data words is important if the file is
mixed case (mode 2).

k
-8-

Command Descriptions

Accept

The command

n ACCEPT

with n equal to 0 or an existing line number, causes the accept­
ance (insertion) of new lines after line n. The Editor responds

.. ENDS INPUT:

Lines are then accepted from the terminal until the line consist­
ing of only two periods and no other characters (not even blanks)
is entered. Such a line is not considered data. If any data
was accepted, i.e. if there were any lines before the line,
the Editor responds

* NEW LINES x - y

where x and y are the first and last (sequential) line numbers
assigned the new lines. Logically, these lines follow line n.
If n = 0, the new lines will precede all prior data.

In the unlikely event that a line comprising exactly two periods
should need to be entered into a file, this can be accomplished
by entering some other character or word and then using "replace"
to change it to the desired two periods.

Disjoin

The command

n1 [TO n2] DISJOIN

causes line n1 or lines n1-n2 to be removed from the map of
current lines but "remembered" in a temporary memory for possible
subsequent JOIN. This temporary memory is overwritten by any
subsequent DISJOIN or SUMMON command, and emptied (set to "no
lines") by any JOIN command. Thus DISJOIN may be used for
deleting lines, or in conjunction with JOIN for moving text.

End

The command

END

closes the current direct-access file; the Editor returns to the
"FILE?:" query for possible additional files to edit. The closed
file may later be reopened in the same state -- i.e. same line
numbers, same map, and same "remembered" lines -- as pertained
at the time of closing.

-9-

Get

The command

n GET filename

causes the sequential file whose name is given to be opened and
read in so as to follow line n in logical sequence. The Editor
respond s

* NEW LINES x - y

as with the ACCEPT command, to inform the user what line numbers
have been assigned. As an example, "0 GET XXX.S" would append
the contents of file XXX.S at the beginning of the current file
being edited. The GET command may be used for standard text
("boilerplate") insertion and for conversion of files from
sequential to direct-access form for editing.

-Join

The command

n JOIN

logically inserts the group of lines removed by a previous
DISJOIN or recalled by a previous SUMMON (i.e. the present
contents of the temporary memory) after line n. The memory
is then cleared. JOIN thus is normally the second half of a
DISJOIN-JOIN or SUMMON-JOIN combination. It cannot be used
to create multiple copies of text; to do that, one would use
a PUT followed by several GETs.

Map

The command

MAP [PAUSING, SUMMARY]

causes the current map to be listed on the terminal. Included
are the map version number, highest line number currently in use
highest line as of the last map update in the file (which should
be the same as the previous number), and counts of the active,
remembered, and free (unused) line number blocks (i.e. map slots
of which there may be no more than 62). Total line counts for
active and remembered lines are also given.

Normally a detailed listing of the line sequence (see
"Operational Concept") is also given; this is omitted if the
SUMMARY option is selected. If PAUSING is selected, the EDITOR
pauses after each line of the detail listing to await one of
the following instructions from the terminal:

-10-

D (or nil, i.e. just carriage return)
E

D or nil causes the Editor to proceed to the next line of list­
ing; E causes it to terminate execution of the command.

Put

The command

n1 [TO n2] PUT filename [NUMBERED] [APPEND, DELETE]

causes lines n1 through n2 to be written out in the sequential
file named. (They also remain in the direct access file being
edited.) This command can be used for copying or saving portions
of files, creating the equivalent sequential file for the entire
file, or for generating listings (e.g. by naming $LPT as the
destination file).

The NUMBERED option causes each line to be prefixed by its line
number. If the APPEND option is used, the lines are written to
the end of the existing file, after other data already present.
If the DELETE option is used, the existing sequential file is
deleted and created anew before being written. The APPEND and
DELETE options are, of course, mutually exclusive. Neither
should be used when writing to devices such as $LPT.

Replace

The command

n1 [TO n2] REPLACE d1 BY d2 [UNLISTED, LISTED, VERIFY]

causes all instances of the word d1 to be changed to d1 in lines
n1 through n2. Either "word" may be a general string in either
of the forms described under "Command Words."

Normally, i.e. if no options are used, the Editor lists just
the line numbers where replacement occurred, together with the
number of replacements for each line (unless the count of re­
placements is 1, in which case it is omitted). If the UNLISTED
option is used, even this summary is omitted; replacement pro­
ceeds without feedback as to where replacement is occurring. If
LISTED is used, the line number, count and line itself (after
replacement) is listed for each line in which replacement
occurred. Finally, if VERIFY is used, the EDITOR behaves as
with LISTED but stops after displaying each changed line to
await one of the following instructions:

Y (or nil, i.e. just carriage return) - yes, change and
proceed

N - no, do not change (leave line as it was) and proceed
E - do not change, and exit from command execution
F - change, and exit from (finish) command

-11-

Note that replacement is made without rescanning any part of
the string d2, so that in some cases instances of d1 may remain
after replacement. For example:

... replace ata by ama

on the data line

atatata

would produce the data line

amatama

The string d2, but not di , may be nil ("").

This command is useful for searching as well as for systematic
substitution. Cne technique for doing this would be to replace
with d2 = d1. Another would be to use the VERIFY option, answer­
ing N to each instruction request until the desired instance is
found, thereupon answering E.

Summon

The command

n1 [TO n2] SUMMON

has the special purpose of recapturing lines that have been
deleted -- i.e. disjoined and then subsequently lost from the
temporary memory. For this command, n1 must be numerically
less than or equal to n2, and n1 and n2 and all lines between
must not be among the currently active lines of the file. The
command causes lines n1 through n2 to be placed in the memory
(thereby "forgetting" any current contents of the memory), for
possible subsequent JOIN. Thus this command can be used to
recover lines deleted in error, but it should be noted that
any group of lines originally containing discontinuities will
have to be reconstructed by not just one but a series of
SUMMON-JOIN command pairs.

Type

The command

n1 [TO n2] TYPE [PAUSING] [NUMBERED]

causes the Editor to list the lines from n1 through n2 on the
user’s terminal. Normally, line numbers are not listed but if
the NUMBERED option is used line numbers are listed above the
corresponding line. If PAUSING is used, the Editor stops after
each line displayed for further instructions as follows:

-12-

D (or nil, i.e. just carriage return) - down 1 (i.e.
proceed)

U - up 1 (i.e. go back to the previous line)
E - exit from command execution

Remarks and Error Messages

The Editor comments on an unusual, and perhaps erroneous,
response or command thus:

REMARK a P’R b

where a is the remark number, i.e. a key to the table below,
and b is a parameter that may give additional information,
according to the remark. The parameter’s meaning, where there
is one, is given in brackets in the table. When the parameter
has no meaning, it is generally displayed as 0.

Except as noted, the Editor terminates command processing immed­
iately upon discovery of the condition remarked upon.

Remark
Mo. Interpretation [parameter meaning, if any]

1 File opening error [error no. as defined by system OPEN]
2 Logic error within DEDIT [internal section no.]
3 Too many command words [maximum number allowed]
4 Command word too long (usually due to unbalanced quotation

marks) [maximum word length]
5 "From" line (n or n1) not 0 or among current active lines

[from-line number]
6 "To" line (n2) not greater than 0. [to-line number]
7 Unrecognized command name [decimal code for first two char­

acters of command given]
8 "To" line (n2) not after n1 in file, [to-line number]
9 BY missing in REPLACE command

10 Nil initial word (d1) in REPLACE command
11 A line would overflow, i.e., exceed maximum allowable

length, if replacement were to proceed. REPLACE execution
is terminated, [line number of line in question]

12 "From" line number not completely a number or FIRST or
LAST (with at least one line in the file) [line number as
partially interpreted]

13 "To" line number not completely a number or FIRST or
LAST (with at least one line in the file) [line number as
partially interpreted]

11| Destination file opening error [error no. as defined by
system OPEN]

15 Unused
16 Direct-access file write failure [error code]. Editor

proceeds.
17 Unused

-13-

18

19

20

21

22

23

24

25
26
27
28

29

30

31
32
33
34

35

36

37

38

Error or end-of-file in terminal read [1=error, 2=EOF].
Line has not been received properly and should be reentered.
Line too long [maximum permissable length]. The line
is truncated at the maximum length.
Direct access file reading error [error code as defined
by system]
Version mismatch upon initial reading of map [version
in map record 1], A possible system "crash" during map
write in previous session has truncated the map. Use
SUMMON to recover any "lost" lines.
Inconsistent map -- probably because the file accessed is
not an Editor format direct access file. The file is closed
(unharmed) and a new file requested.
Unable to continue editing this file. (This remark always
follows one or more others.) File closed and a new one
requested .
Error on direct access file closure [system error code].
Editor proceeds.
Zero "from" line improper in this command
Improper number of words in command [no. of words]
Sequential file open error [system error code]
Sequential file reading error [line number]. Reading
proceeds.
Sequential file closing error [system error code]. Editor
proceeds.
Insufficient free group elements to initiate this command
[number free]. Indicates too many line number discontin­
uities; sequential equivalent file should be generated and
the direct access file reconstituted from it, thereby
renumbering lines.
Direct-access file update-directory error [error code].
JOIN executed with no lines in the temporary memory.
Invalid option [word no.]
Line as typed or put truncated due to prefixing of line no.
[original J ength]
Inappropriate entry during pause or verify [code of char­
acter entered]
In SUMMON command, n1 > n2 or n2 > highest line ever used
[highest line ever used].
In SUMMON, line group overlaps currently active lines
[1st line of currently active group overlapped.]
Line as displayed truncated [actual length]

-14-

3 TECHNICAL INFORMATION

CALLING THE EDITOR

The Editor is a reentrant FORTRAN subroutine. This is to allow
it to be fit into custom online environments with many other
kinds of tasks. It is called in the ordinary way, with five
arguments, viz.:

CALL DEDIT (AACHNL, AALMXL, AACMCD, AAOPTL, AALINU)

The arguments are as follows:

AACHNL Integer array, size 4. Elements are al] channel
numbers, in order: (1) console terminal write;
(2) terminal read; (3) direct-access filets);
(4) sequential filets). The two terminal channels
should be open at the time of call and are left open
on return; the other two should be closed at time of
call and are left closed on return.

AALMXL Integer expression, terminal maximum line size.
Must be between 20 and 80 inclusive. May also be set
to -1, in which case the value of line size and all
following arguments are obtained from the terminal
user directly, as explained in the next section.

AACMOD

AAOPTL

Integer expression, console terminal case mode.
1 = upper case only, 2 = mixed case; other values
illegal.

Logical array, size 4. Elements are yes-no option
selections, in order:
(1) The map version number is displayed each time

the map is written to the file, even during the
periodic updates under the ACCEPT command (see
AALINU below). Otherwise (i.e., if the option
is .FALSE.) the map version is not displayed most
of the time. In general, this option should not
be selected on slow terminals.

(2) All control characters detected on input from
the terminal (other than those interpreted by
system) are changed to spaces. Otherwise, control
characters are not treated specially.

(3) Input lines from the console terminal may be
"continued" so that more than one physical input
line corresponds to one logical input line.
With this option in effect, a line is continued
by typing hyphen at the end, just before the
carriage return. The hyphen and carriage return
are in effect ignored for purposes of assembling
a logical input line, whether it be a command or
data. Several continuations may be used, if

-15-

necessary, to define a logical input line as long
as the maximum of 80 characters per logical line
is not exceeded. Otherwise, if this option is
.FALSE., physical and logical input lines corres­
pond one-for-one.

(M) Trailing spaces in input lines are ignored.
Otherwise, they are considered part of the line.

AALINU Integer expression, lines between updates during
ACCEPT. Must be >= C. This controls how often
the map and directory of the direct access file are
updated to reflect all input to date while entering
data under an ACCEPT command, that is, how many lines
could at most be lost should system failure occur
during data entry. If AACPTL(1) is .TRUE, (see above),
the map version is displayed at the point of each
such update.

If any of the argument values are out of valid range, all the
values (except for the channel nos.) are requested from the
terminal user as described below.

PARAMETER SETTING FROM TEE TERMINAL

If AALMXL is -1, or any of the arguments passed are out of
valid value range, the Editor will, after announcing itself,
ask the cryptic question:

WWWMVBCTIII?:

This is a request for the user to enter the parameters, other
than AACHNL, in the same order as the argument list and in the
exact format (13, 11, 4L1, 13). The mnemonic-to-variable corres­
pondence in the query is: W=width=AALMXL, M=mode=AACMOD,
V=version nos.=AAOPTL(1); B=blanks=AAOPTL(2); C=continuation
=AAOPTL(3); T=truncate trailing spaces=AAOPTL(4); I=interval
between updates=AALINU.

The question is repeated until valid values are obtained from
the terminal.

This facility is intended, obviously, for special use by pro­
grammers and not for general use. It permits, for example,
a general ’’utility" editor to be generated that can be called
up at any terminal and tailored on the spot to the characteris­
tics of that terminal and the user’s desires of the moment
without any special programming.

"CRASH" RECOVERY

By the way in which the direct access file is structured and
managed, there is almost no chance that a system hardware or

-16-

software failure during editing will leave the file in an in­
consistent state. This means that recovery after such failure
is normally simply a matter of reopening the file for editing.
Lines entered under ACCEPT since the last map and directory
update will, in general, be lost and will have to be reentered.
If map versions were being displayed each file update, that
data can be used to locate the point where reentry must commence;
otherwise, it is generally easy enough to find that point by
browsing with the TYPE command.

It is remotely possible that system failure could occur during
the map writing process itself. Even if that should happen,
the only effect should be that the map would be truncated,
i.e. some groups of lines would appear to be lost even though
they are, in fact, in the file and retrievable via the SUMFCN
command. Such an inconsistent condition should be automatically
noticed by the Editor (see the description of remark #21).

Of course, certain kinds of system hardware and software failure
can result in loss of any file and even whole disk packs; fre­
quent backup of all system media to tape or removable disks, or
some equivalent procedure, should be employed to permit reason­
able recovery from such an eventuality.

EXPANDABILITY

Most of the numerical limits mentioned in the description, e.g.
62 map blocks, 80 characters line width, etc., are readily
expandable -- though probably at some cost in memory of file
space -- by altering compile-time parameters in the program and
recompiling.

SUBROUTINES CALLED

DEDIT calls the following subroutines directly:

CAIF CLUC CQIF DERK IBYTE IULST LASTR MOVEB SBYTE

At this writing, the following is indirectly called:

LOCA (called by MOVEB)

A-1

< APPENDIX A DEPRIM UTILITY

A separate utility program, activated by the CLI command DEPRIN,
can be used to obtain line-numbered listings of sequential
files. Such listings are particularly useful as edit masters,
i.e. copies to be marked with all changes to be made in the
next version.

DEPRIN first asks for a free channel number to use in reading
the file(s). Respond "1" unless there is a special reason to
choose another channel. DEPRIN then asks for the name of the
sequential file to be listed. Any opening errors are reported;
if there are none, the file is printed with a time-stamped header
and line numbers to facilitate reference for editing. DEPRIN
then asks for another file to be printed, continuing the cycle
until is given in response to the file name request,
whereupon the program quits.

THE DUXBURY BRAILLE TRANSLATOR USER’S MANUAL
DS-JES-760716-00

Ordering No. DS-JES-760716
(3 Duxbury Systems, Inc., 1976

P. 0. Box 1523
Duxbury, Massachusetts 02332

All Rights Reserved

THE DUXBURY BRAILLE TRANSLATOR USER'S MANUA

DS-JES-76O716-01

Ordering No. DS-JES-760716

(c) Duxbury Systems, Inc., 1976
123 Lowell Drive
Stow, Massachusetts 01775
United States of America

All Rights Reserved

NOTICE

Duxbury Systems, Inc. (DS) has prepared this manual for
use by personnel, licensees and customers. The information
contained herein is the property of DS and shall neither be
reproduced in whole or in part without DS prior written approval.

DS reserves the right to make changes without notice in the
specifications and materials contained herein and shall not be
responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited
to typographical or arithmetic errors.

Original Release July, 1976
Revised: October, 1976

Written for Duxbury Systems, Inc. by Joseph E. Sullivan

ABSTRACT

This document describes the Duxbury Braille Translator,
a table-driven Fortran IV program for the translation of
English text into Standard English (American) Braille, also
known as grade 2 braille. Text in any of several foreign
languages and English text to be transliterated as grade 1
braille or "computer" braille may also be handled. While
general acquaintance with computer programming and the sub­
ject of braille translation would be helpful in reading the
document, no special knowledge in these areas is presupposed.
The program's method of operation, together with detailed
instructions on using the program, are presented.

PREFACE

Ulis document is intended to serve the needs of several different
levels of interest. Those interested only in what the program will do
for example, need read only the introduction. Persons with a general
interest in the subject of braille translation should add the section
on method. Those who actually wish to use the program — transcribers
editors, and typists — will, of course, want to refer to the appropri
ate parts of the Usage Section and may or may not be interested in
method.

This document corresponds to the 7/76 version (8/9/76 release)
of the program, and the DUXSYS 7/76 (8/9/76 release) tables.

TABLE OF CONTENTS

ABSTRACT

PREFACE

Page

1 INTRODUCTION ... 1-1

3

GENERAL ..
THE BASIC READER (B) ..
THE NEXT-CHARACTER HANDLER (N)....................................... . . .
THE TRANSLATOR (T)... .

The Buffer ...
The Alphabet Table Lookup .. .
The Contraction Table Search ...
The Buffer Shift ..
Braille Sign Output ...
The State Transition ...
The Decision Table ..

THE STACKER (S) ..
THE BRAILLE LINE COMPOSER (L) ..
THE OUTPUT WRITER (0) ..

USAGE ..
OPERATION ...
RUN PARAMETERS (CONSOLE DIALOG) ...
TABLE INPUT ..
TEXT INPUT ...

General Form ..
Basic Text Handling, Conventions and Modes
Basic Typing Rules and Character Set
Capitalization ...
Italics ...
Accent Marks ..
Ordering ..
Replacement Symbols and Control Symbols in General.
Special Character Replacement Symbols
Special Symbol Emphasis ..
Forced Blanks ..
Quotation Marks ...
Grade Switching ...
Foreign Languages ..

General Rules ..
Language Class and Grade Switches
Latin, Italian, French and German Symbols . . .
Spanish Symbols ...

Format Control Symbols ..
New Paragraph
New Line ...
Skip Multiple Lines ..
New Page ...
One-Time Tabulation ..

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-4
2- 5

3- 1
3-1
3-1
3-3
3-3
3-3
3-3
3-4
3-6
3-6
3-6
3-7
3-7
3-8
3-8
3-9
3-9
3-9
3-9
3-9

3-11
3-11
3-11
3-11
3-11
3-12
3-12

Tab Stops..3—13
Tab Clear..3-13
Flush-Right Tabulation 3-13
Inkprint Page Number3-13
Hanging Indentation....................................... 3-14
Titles...3-14
Headings..3-14
Poetry and Other Runover Indentation 3-14

Editor’s Symbols ... 3-15
Role of the Editor....................................... 3-15
Letter Sign and Number Sign....................3-17
Division or Null Symbol — Preventing

Contractions .. 3-18
Forcing Contractions 3-18
Direct Braille ... 3-18
Termination Sign..3-19

BRAILLE OUTPUT .. 3-19
EXCEPTION MESSAGES .. 3-19

APPENDIX A SNIPAS CODE..A-1

APPENDIX B SPECIAL SYMBOLS INDEX B-1

REFERENCES

ACKNOWLEDGEMENTS

1 INTRODUCTION

Braille, as it is used today in almost all contexts
other than primer textbooks, is almost a system of shorthand
and not simply a scheme for representing individual inkprint
symbols in a tactile code. This system, called Standard English
Braille (American) or grade 2 braille, is defined in EBAE [72].
A letter-for-letter transcription is called grade 1 braille.

The chief device used to reduce the number of braille
signs in grade 2 is the contraction. A contraction is the
representation of an inkprint letter-group or whole word by
a relatively short sequence of braille signs; for example,
the word "receiving" is represented by the four braille signs
for r, c, v, and g in succession. There are 189 letter-groups
that may be contracted.

Unfortunately (at least from the standpoint of automating
the translation process), a given contractable letter-group
is not necessarily contracted wherever it appears. Moreover,
the rules governing the use of contractions frequently involve
such matters as pronunciation and meaning. For example, in
the word "disease," the "dis" and the "ea" are normally con­
tracted. However, when this word is used in the (now obsolete)
sense "lack of ease," the "ea" should not be contracted. This
example, although admittedly farfetched, illustrates that in
some circumstances even a human transcriber might have diffic­
ulty applying the rules. Cases routinely arise that are easy
for a human transcriber, but still difficult for a mechanical
process — for example, distinguishing the musical note "do"
from the verb "do." For these reasons, automatic natural­
language to braille translation algorithms tend to be heuristic,
which is to say fallible.

The Duxbury Braille Translator (hereinafter usually called
the Translator) is a computer program embodying such a natural-
language-to-braille translation algorithm. It is an outgrowth
of two earlier programs, DOTSYS II and III, described in
Millen [70A] and [70B], and Sullivan [75] . The basic transla­
tion algorithm remains similar, but a number of new features
have been added, the translation quality has been improved, and
better internal processing methods have been introduced.

The processing improvements allow the Translator to be
used on a minicomputer of modest size, at speeds comparable
to that obtainable with DOTSYS on larger computers (about 1000
wpm on a Data General Corporation NOVA 800 with 64K bytes of
memory). DOTSYS II and III, in turn, owe the fundamentals of
their translation algorithm both to previous work in the field
of braille translation by computer and to elementary concepts
in the theory of automata, logic design, and formal languages.
The background references and relationships discussed in the
DOTSYS documents are relevant to the Duxbury Braille Translator
also.

1-1

The source language used in coding the Translator is
FORTRAN IV (UMF [74]). Nonstandard extensions to standard
ANSI FORTRAN were isolated or avoided where possible. This
should enable the Translator, with relatively little modifica­
tion, to be run on any computer having a FORTRAN IV compiler
and a modest amount of core storage (approximately equivalent
to 43,000 bytes plus room for the operating system and its
overhead).

The input text is presented to the Translator in the
form of variable-length mixed-case lines (records), similar
in appearance, when printed on a mixed-case printer, to
ordinary typed text. These can be manually typed directly
from inkprint or produced by another program (such as a
compositor's tape converter) according to a fairly straight­
forward set of conventions. The output is the sequence of
braille signs equivalent to the input text. Output can be
produced in any of several forms, including "proof” output
for a sighted editor and tactile (embossed) braille.

The Translator is almost completely table-driven; i.e.,
details of the translation algorithm are determined by tables
read in at execution time rather than by the program itself.
The Translator, as described in this document, comprises
both the program and a standard set of tables. With modified
tables, the program would be capable of processing different
kinds of text, such as text containing mathematical or technical
notation, languages other than English, or text containing
nonstandard symbols for format control. (The present version
has provision for "grade 1" handling of certain foreign
languages, which is standard for foreign text within basically
English-language works, and generally for literature used by
foreign language students).

1-2

2 METHOD

GENERAL

The Translator comprises six cooperating processors: the
basic reader (process B), the next-character handler (N), the
translator (T), the stacker (S), the braille line composer (L),
and the final output writer (0). It is the translator, as
its name implies, that does most of the work of braille trans­
lation, and in fact, this section forms the main loop or
program, the others being in the form of subprograms called
by the translator to do their work at the appropriate time.
However, in order to follow the processing of a given piece
of text from inkprint form to braille form, it is easiest to
imagine the processors running sequentially, each one in
turn operating on the output, or a collection of outputs,
from the previous processor.

The following descriptions of these processors are
simplified to some extent, so that the discussion does not
become mired in detail.

THE BASIC READER (B)

The B processor reads the input lines and produces a
"stream" of individual characters in which most non-textual
markers (such as the end-of-record) have been removed or are
represented as a character. At this level, a hyphen at the
end of a line is recognized as a signal to transmit neither
the hyphen itself nor a special interline marker character
that is otherwise given to the next (N) processor.

THE NEXT-CHARACTER HANDLER (N)

The N processor operates on the stream of characters pro­
duced by B and modifies it according to which of several modes
it is in. For example, N may recognize a new paragraph
condition, or insert tabulation or new-line controls for
spaces or interline markers, or may delete the interline
markers or substitute spaces for them. It also recognizes
mode controls in the text that are pertinent to its operation,
e.g. $COMPRESS will cause it to start compressing (deleting
excess blanks in the data stream), $AS-IS to stop compressing.

Note that $COMPRESS, and practically all other "distinguished"
symbols discussed in the text can be altered to some other
symbol by changes in the tables, as detailed in Sullivan [76B].

2-1

THE TRANSLATOR (T)

The Buffer

The T processor operates on the stream of characters
issued by N. As a first step, these are collected into a
twelve-character sliding window, called the "buffer," so
that a group of characters can be examined.

The Alphabet Table Lookup

The leftmost character in the buffer is looked up in
the alphabet table. In this table, there is exactly one
entry for each symbol that may appear in the text, containing,
among other things: (a) a code denoting the braille sign
for that symbol, (b) the symbol's "transition class," and
(c) an index to that portion of the contraction table which
pertains to this initial letter. Transition class is an
arbitrary numerical code with purpose to be explained below.

The Contraction Table Search

The next step is to search that section of the contrac­
tion table indicated for this initial letter. In principle,
this search may be visualized as a simple top-to-bottom entry-
by-entry sequential search, although in fact a much faster
"tree-search" algorithm is used. An entry in the contraction
table consists of: (a) a string of up to nine characters
(ten, counting the implied initial letter); (b) two "right­
context class" designators; (c) an "input class" code; (d) a
shift count; and (e) a set of up to four braille sign or
control codes.

For a match to occur on a particular entry, three condi­
tions must be satisfied. First, the entire string for that
entry must correspond to the buffer, or left substring thereof.
Secondly, the input class for the entry determines a set of
"state variable" conditions that must be satisfied. A state
variable is a logical switch, having a value "yes" or "no"
according to its meaning and the text already translated.
For example, a state variable whose meaning is "after a digit"
would have the value "yes" if the character immediately preced­
ing the one leftmost in the buffer had been one of the digits
0-9 and would have the value "no" in all other circumstances,
including initially. "Meaning" is, strictly speaking,
defined completely by entries in another table which governs
the setting of these switches, called the transition table.
This table will be discussed presently. The mechanism by which
the input class selects a set of state variable conditions
to be tested is called the decision table; this table is dis­
cussed in more detail under "The Decision Table," below.

2-2

The third condition for a contraction table match to
occur is that the right-context classes be correct. The two
characters immediately to the right of the matched string in
the buffer are looked up in the alphabet table to determine
whether they fall into classes indicated for this entry,
e.g. right-context class "A"(for Alphabetic) would apply to
any of the letters A - Z.

The contraction table search stops when a match occurs
or the end of the table section for that particular initial
letter is reached. In the latter event the shift count is
taken to be 1, the transition class and braille sign code
revert to those found for the initial letter, and processing
proceeds. Otherwise, the shift, transition class (derivable
from the input class via a table) and sign codes are taken
from the matching entry.

The Buffer Shift

The buffer is then "shifted" left by the amount of the
shift count, with new characters from the input stream enter­
ing on the right.

Braille Sign Output

The braille sign code(s) are sent to the stacker(s) con­
stituting the output of the translator. These may directly
represent braille signs, or they may be special control codes
as is discussed in the section describing the stacker.

The State Transition

Finally, the transition class is used to determine a set
of transitions to be applied to the state variables. For
each variable, the transition may be specified as "no change,"
"toggle" (change "yes" to "no" and "no" to "yes"), "set to
yes" or "set to no."

After the state variable transition, the process is re­
peated, beginning with the alphabet table search.

The Decision Table

The decision table determines whether the current settings
of the state variables permit the use of a given contraction
table entry. A particular decision table entry, corresponding
to a "decision class," will demand that each state variable
have a particular setting - "yes," "no," or "don't care"

2-3

(either setting). The entry is satisfied if all of the
conditions (i.e. the logical conjunction thereof) are met by
the actual current settings of the state variables.

This logic, though simpler and susceptible of more effic­
ient implementation, is also inherently less general than the
decision table logic of DOTSYS III, which realized a disjunc-
tion-of-conjunctions condition, possibly negated. However,
this additional generality was never in fact used in the
DOTSYS tables, and if it were needed with the present logic,
it could be achieved in other ways — namely, multiple contrac­
tion table entries.

THE STACKER (S)

The stacker operates upon the braille sign codes issued
by the translator. In the simplest case, these codes are
merely accumulated until the code for the blank braille sign
is received — i.e., a braille word is finished. This word,
constituting one entry in a stack, is normally then removed
from the stack and issued as output to the braille line com­
poser. In exceptional circumstances, two words may be held
in a stack before release. This is because the order may
have to be changed; for example, in braille, units of measure
are placed before the associated numeric quantity.

All special operations by the stacker, including delayed
release and interchange of order, are directed by control codes
issued by the translator. These are distinguishable from
ordinary sign codes in that they have a value greater than 64.

THE BRAILLE LINE COMPOSER (L)

The line composer operates on braille words (stack entries)
produced by the stacker. In each case, the length of the word
will determine whether it can fit on the current braille
line, an internal output buffer. If so, it is simply added
thereto. Otherwise, the current line is sent to the final
output writer, cleared, and started anew with the current
braille word.

The line composer also concerns itself with counting lines
to determine a new page condition, page numbering and titling,
centering of headings, tabulation, special modes for poetry
and hanging indentation and similar formatting matters. As
with the stacker, all special operations of the line composer
are controlled by control codes issued by the translator (and
originating in the tables).

2-4

THE OUTPUT WRITER (0)

Braille lines composed by L as a sequence of sign codes
are converted on a one-for-one basis to a suitable output
code and written to the designated output file or device.

2-5

3 USAGE

OPERATION

This section describes usage under Data General’s RDOS (RDOS [73])
operating system on a NOVA line computer, or an equivalent system.
Operation on other systems may vary in some respects.

The general concept of operation is that overall control is
exercised interactively at the main console ($TTO/$TTl), while all other
input and output is to and from sequential files that, thanks to the gen­
erality afforded by RDOS, may be disk-or tape-resident or any device
addressable by the system. The operator specifies the names of these files
or devices at the console, together with a limited number of run parameters.
Exception messages are directed back to the console during the progress of
the run.

The translator is activated for a series of runs by the RDOS-level
command

TRANSLATE
whereupon the translator announces itself, viz. DUXBURY BRAILLE TRANSLATOR
7/76 and prompts the operator for file names and run parameters as described
in the next section. After the run, all files are closed and the translator
asks:

MORE TRANSLATIONS?:
If the response is YES, the cycle resumes with the request for file names
and parameters. Since one of the files is the driving table, which does
not usually vary from run to run, provision is made to allow a given table
to persist without re-reading. If the response to the "MORE" question
is NO, a. return to RDOS is made.

The translator has been equipped to permit a copy of the remarks
(error and comment messages) it sends to the console to be directed to
some other file or device. It requests the name of this file just before
the self-annoucement message, with the prompt:

DESTINATION OF REMARKS?:
If such a copy is desired, a file name (as described for run parameters,
below) should be supplied; otherwise respond "-1".

RUN PARAMETERS (CONSOLE DIALOG)

The following are the questions asked by the Translator of the
operator. In all cases, response should be followed by a carriage
return; as with RDOS console input in general, the rubout character
(echoed as ♦•) may be used to delete one or more characters of a response
before the carriage return. However, please note that the control-A
character will interrupt back to RDOS.

In YES or NO responses, only the first two characters are checked.
File names should be in standard RDOS form, e.g. XYZ, DP0:ABC.D (using the
"0" convention for zero.)

3-1

1. SOURCE OF TABLES?:
Respond with the name of a file containing binary tables to drive
the Translator. For the standard tables, reply:

AMERICAN
The binary form of tables is generated by a table preparation
program (Sullivan C76BI) User-generated tables may be run through
this program for use with the Translator. The identity of the tables
read in and the exact date of compilation is written back to the console
for verification.

2. USE TABLES LAST READ IN?:
This question is always asked just after the tables are read in, to
allow recovery in case the tables, as identified in the console
message, are not the ones desired. The question is also the first
one asked for the second and subsequent runs.
Respond YES or NO. If YES dialog proceeds to question 3, otherwise
a return is made to question 1.

3. SOURCE OF TEXT?:
Respond with the file name of the input text to be processed.
Preparation of the text file is described in later section.

U. CAPITALIZE AUTOMATICALLY?:
Respond YES if the input is in ordinary (nixed case) form and it is
desirable to introduce braille capital signs in accordance with stan­
dard U.S. practice. Respond NO in either of the following two cases:
(a) Input text is in ordinary form and braille capitals are not wanted,

in accordance with standard British.1 and Canadian practice.
(Note that it is possible to force occasional capitals in the
text, if desired, with literal controls.)

(b) Input text is in old DOTSYS form, i.e. all uppercase with capitals
entered literally. Note that in this case the literal capitals
are not suppressed.

5. DESTINATION OF BRAILLE (EDITOR’S CODE)?:
Respond with the name of a file to receive the output, as described
in a later section. The file may pre-exist or not. (in the former
case, the old data is overwritten.)

6. LINES PER BRAILLE PAGE? :
Respond with an integer in the range 3-100 to specify the length of
an output page in lines.

7. SIGNS PER BRAILLE LINE?:
Respond with an integer in the range 7 - to to specify the width of
an output page in braille signs.

8. BRAILLE PAGES NUMBERED?:
Respond YES if it is desirable to number the braille output pages
automatically, NO otherwise. If the answer is NO, questions 9 and. 10
are not asked.

3-2

9. PG. NO. PARITY (1=ODD, 2=EVEN, 3=BOTH)?:
Respond with an integer in the range 1-3 selecting
which kinds of pages will be numbered. Note that,
in accordance with standard practice, braille page 1
is never numbered.

10. STARTING BRAILLE PAGE NO.?:
Respond with an integer in the range 1 - 999.

The Translator begins processing, issuing only exception
messages (described in a later section) back to the console.
After finishing the run, dialog resumes with question #2 as
noted.

TABLE INPUT

As was noted above, table input is the ’’binary'' (compacted)
output produced by a preparation program. Another document
(Sullivan [76B]) describes that program and the table formats.

TEXT INPUT

General Form

Text input is usually in the form of lines or records,
up to 80 characters in length. The text is in most respects
similar to ordinary typed material, i.e. there are both upper
and lower case letters, paragraphs are indicated by skipped
or indented lines, and tabular material may simply be aligned
as desired without special format control indications. Such
special controls are needed, however, for many of the special
effects that may be desired in the braille; for example,
headings to be centered must be surrounded by the symbols
$HDS . . . $HDE (heading start and end).

Text of this kind may be produced by an editor such as
the Duxbury Editor (Sullivan [76a]) or Data General's SUPEREDIT,
and no doubt by many other means.

"Old" DOTSYS-style input, comprising fixed-length records
all in upper case with true capitals indicated by a special
flag, may also be processed if automatic capitalization is
disabled (see "Run Parameters," above). Note, however, that
many DOTSYS control symbols have been changed and the new
ones must be used for correct operation.

Basic Text Handling Conventions and Modes

The most basic line-handling conventions are: (1) any
blanks at the end of a line are always ignored and (2) a hyphen

3-3

at the end of a line is deleted and text on the next line
treated as if it had immediately followed the character preced­
ing the hyphen, with no intervening characters or markers.
Thus "virtual lines" may be of any length, although "physical
lines" are bound by the 80-character limit.

Beyond this, the ends of lines and spaces are treated
differently depending on what combination of modes is selected.
A mode is activated by including the appropriate symbol,
e.g. $RUNNING (in either upper or lower case or mixed) sur­
rounded by spaces, anywhere in the text itself. The selected
mode then persists until changed by a mutually exclusive
mode selection.

There are three mode groups, within which one and only
one mode is active at a given time.

The first group pertains to automatic recognition of
paragraphs. The initial and usual mode is $PAR. In this mode
any skipped line or line beginning with two or more spaces is
recognized as the beginning of a paragraph, and the program
reacts exactly as if the symbol $P (described below) had
been literally included. In the $NO-PAR mode, there is no
special treatment of these situations. Note that when $PAR
is in effect, the recognition of these special line-end
situations takes precedence over the actions implied by the
modes described below.

The second group relates to treatment of end-of-line.
The usual and initial mode is $SPACING, in which the end-of-
line is treated as a space. In $RUNNING mode, the end-of-
line is completely ignored so that text is run together unless
an actual space is entered at the beginning of each line. In
$MARKING mode, the program behaves exactly as if the new-line
symbol<(described below) had been entered at the end of each
line. In this mode, in other words, original line endings
will be preserved in the braille.

The third group relates to treatment of spaces. The
initial and usual case is the $COMPRESS mode, in which multiple
spaces are treated as one. In $SENTENCE mode, blanks are
generally treated as in $COMPRESS mode except that up to two
spaces are processed after a period, as was done in DOTSYS.
In $AS-IS mode, all spaces are accepted and processed. Fin­
ally, in the $AUTO-TAB mode, all groups of spaces are processed
as tabulations, i.e. exactly as if the tab symbol (described
below) had been entered in the text. This mode permits entry
of tabular material uncluttered by excessive control symbols.

Basic Typing Rules and Character Set

In general, subject to the form of text and prevailing
modes as explained in the preceding sections, text is typed
just as it appears in inkprint, using the same characters.

3-4

There are some exceptions to this general rule even in simple
cases, and in certain cases more complex facilities must be
called into play as will be explained in subsequent sections.

First, as was implied by the foregoing section, text may
be typed free-form without regard to original line spacing,
unless the special $MARKING effect is desired. A line should
be skipped or a new line indented at least two spaces for
each new paragraph.

The characters typed should ordinarily be the same as
the inkprint in the following cases:

A - Z, a - z (letters)
0-9 (numbers)
: (colon)
; (semicolon)
. (period or decimal point)
, (comma)

(hyphen - not when minus sign)
1 (apostrophe - not when single quote)
" (double quote)
* (asterisk)
[] (brackets)
() (parentheses)
? (question mark)
! (exclamation point)

Single quotes should be typed as double quotes, even though
a quotation may be included in another. In the case of quotes
within quotes within quotes (or deeper), special rules apply
as will be discussed. A minus sign also requires a special
symbol, to be defined below.

A dash in inkprint should be typed as two hyphens (—),
a long dash as four hyphens (-------), without surrounding spaces.
An ellipsis should be typed as three periods (...), without
any intervening spaces.

The following special characters may be typed as they
appear in inkprint only conditionally; if the conditions are
not met a special symbol must be used:

$ (dollar sign) when followed by a number, e.g. $30.50.
& (ampersand) when surrounded by blanks, e.g.

Boston & Maine.
% (percent sign) when not followed by a letter, e.g. 10%.
/ (slash) when followed by numbers or (unitalicized)

letters, e.g. days/year.

The following characters have only special uses in text
preparation, as will be described, and should not be copied

3-5

directly from inkprint. Many of these and other symbols that
can appear in inkprint have special symbols defined for them
(below); those that do not can also be spelled out, e.g.
"equals" for

= (equals sign)
(underscore)

F (at sign)
\ (back-slash)
<> (angle brackets or inequality signs)
(number, pound or sharp-sign)
+ (plus sign)

The character
t

sometimes represented as
A

may be typed in the input but it will be entirely ignored.

In the following sections, special situations not covered
by these general rules are discussed.

Capitalization

Normally, capitalization is handled completely automatically
by the program. However, when automatic capitalization is turned
off by setting of a run parameter, any capitalized word to be
represented as such in braille should be preceded by an equals
sign (=) for initial cap, double equals sign (==) for all caps.

Italics

If only one, two, or three successive inkprint words are
italicized, each of the words must be preceded immediately by
an underline (_) when typed.

If four or more successive inkprint words are italicized,
the first word must be preceded immediately by two underlines
(___) and the last by one underline.

Accent Marks

Any accent or other diacritical mark used with a letter
(such as e, e, £, a, c) is represented by preceding the typed
letter with a percent’sign (%). For example, Abb4 is typed
Abb%e. However, see the section entitled "Foreign Languages"
for proper handling of passages in foreign languages, other
than anglicized words or proper names.

3-6

Ordering

When two or more special symbols must be typed (e.g. an
italicized accented letter), possibly in conjunction with
ordinary punctuation, the ordering should be:

Opening parenthesis or bracket
Opening quotation mark
Italic sign(s) (o'r_J
Letter sign (+, cTiscussed below)
Accent sign (%)
Capital sign(s) (= or ==, if entered literally)

(Braillists will note that the last two are in the reverse of
the correct braille order. The Translator will put them in
correct order in the output, but requires this order of input
for internal technical reasons.)

Replacement Symbols and Control Symbols in General

There are three classes of special symbols that may be
included in text input to the Translator.

The first class is that of replacement symbols, i.e.
groups of one or more characters that are (1) typed in place
of an inkprint character or character sequence, or to express
properties of the following character(s), and that (2) give
rise to a sign or sign sequence in braille. (The percent,
underscore and equals for accent, italics and capitals are
thus replacement symbols.) An example would be &ae, entered
for the ae diphthong in some instances of foreign-language
text. The general typing rule for replacement symbols is that
they be entered directly in place of the inkprint character,
possibly abutting non-blank characters, with the alphabetic
characters in lower case (unless automatic capitalization is
disabled). Replacement symbols, excepting those already
mentioned, always begin with the ampersand (&).

The second class includes all control symbols, i.e. those
that cause some action, often relating to formatting, and
usually without corresponding to some fixed sequence of braille
signs. The general typing rule regarding these is that they
be entered with surrounding spaces, although many control sym­
bols would operate properly even if this restriction is not
observed. Most control symbols begin with a dollar sign ($).
Those that do not are < and 7. Control symbols may be entered
in either case (upper or lower or mixed). The symbols already
introduced for basic text handling, e.g. $PAR, are examples of
control symbols.

The third class comprises the editor's symbols; these
will be discussed separately.

3-7

Special Character Replacement Symbols

Special input symbols must be typed to represent inkprint
characters that are not in the character set listed above, or
that cannot be typed directly under the restrictions mentioned:

Enter to represent

&(lv) long vowel sign (as in poetry or in

& (sv)
&(ft)
& (cs)
&($)
&(%)
&(/)
&(&)
&(#)
&(@)
&(+)
&(-)

foreign languages)
short vowel sign
end-of-foot sign (as in poetry)
caesura sign (as in poetry)
dollar sign
percent sign
slash
ampersand
number or pound sign
at sign
plus sign
minus sign

In cases where numerous instances of such a special
character occur in a passage, it is suggested that another
non-occurring character (e.g. *) be typed instead of the
special symbol, and that editing facilities be used later to
systematically substitute the special symbol for the typed
character.

Note that, due to the properties of braille, it will not
always be appropriate to try to represent special symbols
in situ. For example, because the period and dollar sign are
the' same sign in braille, an attempt to represent

He is worth million$ more...
by

He is worth million&($) more...
will come out in braille as

He is worth million, more...
This is a concern of the editor, as will be discussed in a
separate section.

Special Symbol Emphasis

In rare cases where it is necessary to emphasize that a
literal symbol itself is important, as opposed to its meaning
(e.g. in typing instruction manuals), the symbol

& (sym)
may be entered immediately before the symbol, whether a direct
symbol or a replacement symbol. For example,

&(sym)% for %
&(sym)&(@) for @
&(sym)&(&) for &

3-8

Forced Blanks

For special effects, it may be desirable to enter one or
more blanks whose relationship to the surrounding text will
be preserved in the braille (and not eliminated by $COMPRESS
mode, for instance). A blank to be treated as if a non-blank
braille character can be generated by entering

&b
once for each desired blank.

Quotation Marks

In cases of quotes within quotes within quotes, or deeper,
the innermost quote marks should be entered specially, viz:

&(oq) for opening quote marks
&(cq) for closing quote marks

For this purpose, a citation of a letter is not considered a
quotation, e.g.

... "i" comes before "e" ...
must be typed as-is, no matter how deep the clause may appear
in levels of quotation.

Grade Switching

In some cases, it is necessary to translate text in a
(nearly) letter-for-letter fashion, i.e. without allowing the
contractions or many other rules of English Braille to be ap­
plied. An example would be certain foreign language passages,
as will be discussed. Such a translation is called "Grade 1"
braille; Standard Braille is "Grade 2."

Enter
$G1 to cause following text to be trans­

lated as grade 1.
$G2 to switch to grade 2
$G to switch grades (from 1 to 2 or

vice versa)
The use of $G, which has been retained from DOTSYS for compat­
ibility reasons only, should be discouraged as it is not always
obvious to a reader which way the switch is intended, and also
because the effect of omitting a switch is to cause all sub­
sequent text in the run to be translated in the wrong grade,
even though other grade switches follow.

Foreign Languages

General Rules

Occasional foreign words and phrases in an English context
must be translated in grade 1, but, except for Spanish, other­
wise treated as English in regard to punctuation and the use
of replacement symbols. The exception in regard to Spanish
is that accented letters should use the special replacement

3-9

symbols for those letters (presented below), rather than the
general accent (%) mark.

In cases of works incorporating substantial foreign
language passages,_as_in-English textbooks for the study of
foreign languages, the foreign passages should be translated
in grade 1 and special replacement symbols should always be
used for accented letters or other characters peculiar to the
language.

This statement of the rules is considerably simplified
in relation to the Standard, and here as elsewhere the attention
of an editor may be required.

Language Class and Grade Switches

The class of foreign language to be translated must be
declared in advance by use of "$FL" (foreign language) mode
switch. The two available are:

$FL-SPAN • Spanish
$FL-LIFG Latin, Italian, French, and German

The mode switch need be entered only once in the text, unless
the class is to change in the midst of the text, and may be
placed anywhere before the foreign language passage(s). If
no switch is present, $FL-LIFG is assumed.

A switch into grade 1 mode ($G1...$G2) should be made for
the entirety of each foreign language passage.

Latin, Italian, French and German Symbols

For vowels with accents, enter followed by the vowel
followed by

a for an acute accent (x)
g for a grave accent (K)
X for a circumflex accent (*)
d for a diaresis or umlaut (’*)

For example,
symbols:

&ea is input for e. For other special

enter for

&CC
&ae
&oe
& (lv)

q (cedilla)
ae (diphthong)
oe (diphthong)
long vowel sign (before affected

letter)
& (sv) short vowel sign (before affected

letter)

3-10

Spanish Symbols

For vowels with accents, enter followed by the vowel
for all acute (z) accents. Enter &d for u. For other symbols:

enter for

&n h (n-tilde)
&? c. or ?
1 i or I

opening or closing conversation
sign (—)

The conversation signs should
quoted word or after the last
print.

be entered before the first
with spacing conforming to ink-

Format Control Symbols

New Paragraph

Normally, new paragraphs are detected automatically in
the input by the presence of skipped lines or a line indented
two or more spaces. If this feature has been disabled (by
$NO-PAR, described above), or if for any other reason it is
convenient to indicate a new paragraph with a literal control,
the symbol $P may be entered to indicate the beginning of a
new paragraph. The text following $P is started on the next
line in the braille output, indented two spaces (that is,
starting in the third cell position).

New Line

The symbol $L may be used to ensure that following text
starts on a new line. If it is encountered at a point where
a new line would begin anyway, no line is skipped; consequently,
multiple $L symbols will have no different effect from a
single one. To skip a line unconditionally, or to skip multiple
lines, see "Skip Multiple Lines" below.

Skip Multiple Lines

The symbol $SLn where n is a number (a non-negative
integer) will skip the number of lines indicated, and output
will continue from the left margin. For example, $SL37 will
skip 37 lines; $SL1 will go to the next line; $SL0 will have
no effect. No more than three braille pages will be skipped
by this control.

3-11

The symbol
<

may also be used, in place of $SL1.

New Page

The symbol $PG in the text will cause following text to be placed on
a new page. The symbol $PGn, where n is an integer greater than or equal
to 1, will cause the new braille page number to be set equal to n.

One-Time Tabulation

If the symbol $TABn is entered, where n is a positive integer, the
text following the symbol will start at column n in the braille. Tabulation
is implemented by the automatic insertion of spaces into the output and will
therefore proceed to the next line if n is less than or equal to the present
column number. Several variations, indicated by suffixes on the symbol,
are also available for different types of tabulation.

The first set of variations has to do with the type of tabulation to
be carried out. If a suffix R is attached, the tabulation will be such
that the rightmost braille character of the word following the control
symbol will fall into column n. This is to allow right-aligned columnar
material. If a suffix D is attached, the tabulation is such that the decimal
point, if any, in the following word (or the position beyond the rightmost
character if there is no decimal point) falls into column n. This is to
facilitate alignment of numerical tables. If a suffix C is attached,
tabulation is such that the center character of the following word (or that
just to the left of center if there are an even number of characters) falls
into column n. As with ordinary tabulation, a new line would be used if
the effect of tabulation would be to overwrite text. The suffix L, for
left alignment, may also be attached; the interpretation is the same as the
no-suffix case and so the L is not needed unless a filler suffix is also
attached as described below.

The second set of variations permits "filler" characters to be
inserted in the braille between the present position and the beginning of
the tabulated text. A suffix "F" or "P" may follow the L, R, C or D suffix
to indicate that filler characters are to fully occupy the intervening spaces
or partially occupy them (blanks being preserved at either end). The
character to be used as fil_Ler should be expressed in output (editor's)
code and should follow the F or the P. The editor’s code will be discussed
presently, but assuming that the character 1 stands for the braille sign
dot-5 (as it does in the generally used Snipas code), then an example of
input might be

$L Parts $TAB29DP1 $23.26
In the brail 1 e>> "Parts" would appear at the left of a new line, the
decimal point of "$23.26" in column 29 of that line, and all but the
two end spaces between would be occupied by the dot-5 sign.

Tabbed words are shifted left, if necessary, to avoid extending
beyond the right margin. If an alignment code other than R, D or L is
used, L is assumed. If a filler code other than F or P is used, F is assumed.
In the present Translator, these corrective actions are taken without comment.

3-12

Tab Stops

Numbered tab stops can be set so that the user can right, left, center,
or decimal point justify a word or number by stop number rather than by column.
The general form of the control symbol for setting stops is $STBsan, where
s is the stop number (1-9), a is the alignment type (R, L, C or D as explained
under "One-Time Tabulation," above), and n is a column number. For example,
the symbol $STB4L3 means set tab stop 4 to left justify on column 3. After a
tab stop has been set, it may be used any number of times by inserting the
symbol $# followed by the one digit number of the tab to be executed option­
ally followed by a 2-character filler suffix as explained above under "One-
Time Tabulation." (Example: $STB4l3 LEFT — will left-justify the word
LEFT on column three. The symbol can be used any number of times.) If
a tab is called for in a cell position less than or equal to the present
position, output will begin on the next line.

The definition of a given tab stop number may be changed as often as
desirable in the text. Initially, stops 1-8 are set to left-justify on
column ((2 x stop number) + 1) (i.e. 3, 5, 7 etc.) and stop 9 to right-
jus tify on column to.

The symbol
>

may be used to cause tabbing to the next stop whose column number is greater
than or equal to the current position in the output. No filler suffix is
permitted. Thus > is equivalent to $#s where s is the stop number whose
preset column is not less than the present column position but is less than
the column of any other stop (tie goes to the lowest stop number). If no
stop is set beyond the present position, > becomes equivalent to $FR,
described below under "Flush-Right Tabulation."

Tab dear

The control symbol $CTB "clears" all tab stop settings. More precisely,
all stops are set to right-adjust at the far right of the page. (This is
to facilitate removal of unwanted tab stops before setting up stops to be
used automatically, i.e. in $AUTO-TAB mode.)

Flush-Right Tabulation

The symbol $FR, optionally followed by a two-character filler suffix
as explained under "One-Time Tabulation," causes the following word to be
aligned so that its rightmost character is full right on the page. For
example, if the page width is set to 35, $FR is equivalent to $TAB35R.

Inkprint Page Number

The inkprint page number may be entered following the symbol $LEA
(for "leaf") with an appropriate filler suffix as explained under "One-Time
Tabulation," above. Generally, the suffix is "F" and the output code symbol
corresponding to braille sign dots-3-6. In Snipas code this is the hyphen;
thus the input to indicate inkprint page 36 would be

$LEAF- 36
Note that a space is required before the actual page number.

3-13

Hanging Indentation

The symbol $INDn, where n is a positive integer, sets the left mar­
gin, i.e. the first column that will be used in the braille output, to n
until another $IND symbol is encountered. For example, $IND12 will have
the first 11 columns blank, unless text is forced thereinto by tabulation,
on subsequent lines. Initially, of course, $IND1 is assumed. (See also
"Poetry, etc.", belox)

Titles
Titles are placed between the symbols $TLS (Title START) and $TLE

(Title END), (e.g. $TLS THIS IS A SAMPLE TITLE $TLE.) After a title has
been inserted, each subsequent page has a centered title as its first
line (the same line which contains the page number). If a new title is entered,
it takes the place of the old on all future pages. Entering the title does
net axtomatically turn to a new page.

Control symbols other than $TLS or $HDS (described below) may be
generally used within titles, but tabulations will generally not have the
desired effect because centering of lines is done after they are set up.

Titles may run to a maximum of two braille lines; thus at most one
< symbol, for example, could appear in the input for a title.

Headings

These are similar to titles except that the control symbols are $HDS
and $HIE and that headings are a one-time occurrence. The $HDS may be
augmented by a nonnegative integer n, e.g. $hdsl0, to cause a page eject
before the first line of the heading unless at least n lines will be left
on the current page after that first heading line. If no n is given, n=l
is assumed. ($hds0, which is equivalent to the DOTSYS $HDS, is permitted.)
Whether or not a page eject occurs, headings are centered starting with a
new line; they may run to any number of lines, each of which will be centered.
After the $HDE, subsequent text will begin on a new line.

The same considerations with respect to control symbols within
headings apply as for within titles, except for the limitation on the
number of lines.

Poetry and Other Runover Indentation

The symbols $PTYS (Poetry START) and $PTYE (Poetry END)should be placed
before and after all poetry text input. In this mode, the continuations of
all poetry lines that exceed the physical length of the output line will be
indented two spaces. The symbol $PTYS may be augmented to allow specification
of the runover line indentation amount. The number of spaces to be left blank
is specified by a number attached to the symbol, e.g. $PTYS4. (if no such
number is given, 2 is assumed, as stated above.) Note that, unlike $tls...
$tle and $hds ... $hde, $PTYS and $PTYE symbols need not necessarily occur
in pairs. In fact, $PTYE is equivalent to $PTYS0. Thus successive $PTYSn
symbols may be used to vary the runover line indentation amount. This
facility, together with the $INDn symbol (whereby all lines, i.e. the left
margin, may be indented) permits different combinations of indentation for
many purposes besides poetry.

3-1U

Editor's Symbols

Role of the Editor

Occasionally, the involvement of a person familiar with braille will
be necessary. This may be for special braille effects such as diagrams or
tables presenting arrangement problems,.or it may be to correct the braille
output even though the input, prepared under the foregoing rules, be correct.
The latter need, which may arise because of the approximate nature of the trans­
lation process, may be especially felt if "perfect” braille is required, as
opposed to hra.il1 a having some "misprint" toleration level.

Hie situations that give rise to braille translation problems for auto­
matic processes are many and varied; the most serious are those deriving from
the sound or meaning of the text. R.L. Haynes [68] of the American Printing
House for the Blind remarks on this as follows:

"Some types of data encountered when translating inkprint into
braille:

1. New 'Words.
Vietnamese

2. Variant spellings.
greate (for greate) Conectecotte (for Connecticut)

3. Rarely used words.
bioengineering salmonellosis

4. Letter sequences whose translation depends upon meaning,
do (verb) do (musical note) said (verb) Said (place)

5. Compound words divided at the end of an inkprint line.
Determination whether or not to use hyphen is based upon how
word appears elsehere in the text.

6. Run together words.
’ an Idon'tcareifittakesahundredyears attitude’

7. Foreign words. Foreign words are translated in Grade 1.
A distinction must be made between foreign words which are
names and those which are not. Names are put in Grade 2.

8. Acronyms. Translation depends upon whether or not the initials
stand for separate words. SHARE SEATO DAR

3-15

9. Initials followed by periods. Spacing in braille
may vary from inkprint depending upon whether
or not the initials stand for a person's name.
WASHINGTON D.C. D. C. JONES

10. Single letters. Sometimes a letter sign must
be prefixed in braille.
Ward C. C. Arnold A (article) big red A

11. Prepositions. Contraction in braille depends
upon meaning.
note 'to' in the phrase 'be friendly to all your'
...how wrong you can be about a person you have
taken the trouble to be friendly to all your
life, but at least...
It is difficult to be friendly to all your
neighbors.

12. Italics.
a. Words italicized in inkprint are not always

italicized in braille.
b. Italicizing of a series of words in braille

may be indicated in different ways depending
upon whether or not the words are a title.

13. Measures. Abbreviations which follow numbers in
inkprint precede the numbers in braille.

14. Hyphenated but not compound words. The hyphen
is used in braille but may not end a line,
say-ing th-th-them

15. Numbers separated by colons. Braille represent­
ation of time differs from representation of a
reference.
He came at 6:30. Genesis 3:12

16. Numbers separated by a hyphen. Usually the
number sign is not repeated but there are
exceptions.
1956-58 5:10-5:20

17. Dash. A long dash in inkprint becomes a braille
single dash if it is punctuation. A short dash
in inkprint becomes a braille double dash if it
represents an omission.

18. Blank lines. The effect of a blank line upon
the format of the braille page depends somewhat
upon nature of the preceding and following text
material.

19. Chapter titles. Occasionally the number of lines
required for a title in braille varies from the
estimate based upon inkprint. This in turn may
affect the ending of a page to begin the next
chapter.

"The list above is not intended to be complete. The
types of situations mentioned are not hypothetical
but are based upon normal work in translation. All
things considered, the application of data processing
to braille translation has been successful. Correct

3-16

translation of the types of data mentioned above is
achieved by a procedure which includes:
a. Occasional editing of inkprint copy by a braillist.
b. Insertion of some special control symbols by the

keypunch operators.
c. Pre-translation reading of the text by the computer

to locate a number of types of potential diffic­
ulties .

d. Scanning by a braillist of a test prooflisting
of the format.

e. Proofreading of the braille text."

The Duxbury Translator handles many of the above situa­
tions correctly, some incorrectly. In particular, some known
situations incorrectly handled are:

1. Plural citations of letters, e.g. Hs, p's, "q's".
Single citations, with or without quotes, italics
and accents, should be handled correctly (i.e. the
letter sign used) in most cases.

2. Numbers followed by units of measure are correctly
reversed and joined in most cases, but the number may
end up on the following line if it cannot fit,
which is incorrect. (also, as an example of a
meaning-based problem, "feet" in A centipede has 100
feet...is taken to be a unit of measure.

The editor has three courses of action open to him. First,
he can alter the output file directly, using any suitable editor
program, before actual embossing. This is the electronic equiv­
alent to manually eliminating or adding dots on previously pre­
pared zinc plates; it is the easiest way to perform really small
changes but not at all suitable for large changes, particularly
where cascading effects are involved. Secondly, he can alter
the Translator's driver tables, a process described in another
document (see "Table Input," above). Modification of tables
is usually indicated only when a word, acronym or other sequence
is found to be mistranslated and it is expected that the sequence
will be encountered again in subsequent works. Thirdly, he can
enter special symbols in the input file, either-the replacement
and control symbols already discussed or the editor's symbols
defined in the following sections.

Letter Sign and Number Sign

To insert a letter sign as is sometimes required by the
braille rules to distinguish a character or sequence from a
contraction or short-form word, insert the symbol

+
which acts like a replacement symbol. Note that the Translator
correctly adds a letter sign in many instances.

3-17

Similarly, the Braille number sign may be inserted liter­
ally by the symbol

#
although the number sign is almost always inserted correctly
and automatically by the Translator.

Division or Null Symbol - Preventing Contractions

When it is necessary to prevent the Translator from recog­
nizing, i.e. grouping, a sequence of input characters, the
symbol

//
may be entered within the sequence to prevent such recognition.
This symbol acts as a replacement symbol, corresponding to no
braille output signs.

The most common use of this symbol is to prevent contrac­
tions in unusual words where the Translator improperly con­
tracts a sequence of letters. Many such cases involve strong
syllable or root word boundaries within the sequence; correct
translation can be achieved by placing a division symbol at the
boundary, for example:

outhaul
would be incorrectly brailled with current tables (the "th"
would be contracted) but entering the word as

out//haul
would force correct output.

Forcing Contractions

The use of the short form of any contractable letter group
can be forced, regardless of context, by surrounding the letter
group with the symbols "/ " and " /". For example:

a/_dd_/
would cause the "dd" contraction to be used even though other­
wise the program would not (and should not) use it at the end
of a word. The 189 symbols of the form /_c_/ where c is a con­
tractible letter-group, all act as replacement symbols. Note
that if capitalized letters are present in c, then any capital­
ization must be explicitly entered (with =) prior to the /_.

Direct Braille

When the exact form of braille to be generated is known,
the symbol

followed immediately by any number of characters in output
(editor’s) code, terminated by a space, may be used to generate
the desired word in braille. The word thus composed is treated
as any other word issued by the Translator, e.g. tabulation may
be used to control its placement within a line.

3-18

Upper-case characters of the output code may be entered
in lower case. Note that no replacement or control symbols
will be recognized within the \... sequence; only the space
terminates the symbol.

For example, a right-directed arrow, made up of several
dots-2-5 signs and a dots-1-3-5 sign, may be entered as fol­
lows (assuming Snipas code): \:::::0

Termination Sign

In situations calling for the termination sign in braille,
e.g. to terminate the effect of italics within a word, enter
the symbol

which acts as a replacement symbol. Note that when automatic
capitalization is in effect, cases of consecutive multiple
capitals within a word may cause automatic introduction of
termination signs as well as capital signs.

BRAILLE OUTPUT

Braille output is in the form of a file in braille­
equivalent ASCII (American Standard Code for Information
Interchange), usually made up of the 64 printable ASCII
characters (not including lower-case letters) put into one-to-
one relationship with the 64 braille signs. Such a code is
called the output or editor’s code and in some circumstances,
as has been seen, the same code is used for input.

The coded lines and pages of this output file correspond
to the lines and pages of braille. An embossing device (such
as the Triformations, Inc. LED 120) can accept the file directly
from the translator if it is "wired" for the output code and
does not require special timing and control characters. How­
ever, it is usually desirable to store the output file on an
electronic medium to permit perusal and editing as has been dis­
cussed, and to allow for multiple embossing runs without re­
translations.

The output code is specified by the tables, which in
standard form implement the Snipas code, defined in an appendix.
Use of other codes should be discouraged, because of the implic­
ations for input compatibility with other installations.

EXCEPTION MESSAGES

Message remarking on unusual and perhaps erroneous situa­
tions arising during the translation process are directed back
to the control console. These take the general form:

3-19

* ... Message
NEAR lAL/C a b OP/L c d QAL e
parameters

where:
1. The (0 or more) asterisks indicate by their number an estimate of

the "severity level" of the condition, viz.:
0 - Remark
1 - Warning only (unusual but legal condition)
2 - Error, probably fixed by automatic corrective action
3 - Error, corrective action probably not sufficient for correct

output
4 - Error, corrective action impossible (program stops)

2. a and b are the absolute input line number and character number within
the line at (or slightly before) which the condition occurred.

3. c and d are the braille page number and line number within page at or
near which the condition occurred.

4. e is the absolute output line number at (or slightly beyond) which the
condition occurred.

5. Parameters are additional information defined for a few messages.

The exception messages are as follows (severity level and parameter
definitions are given in parentheses):

1. WORD OVERFLOW (3)
A braille word is too long to fit on an output line. It is truncated
on the right.

2. TITLE OVERFLOW (3)
A title exceeds two lines in length. Lines between the first and last
will be dropped.

3. CHAR. OUTSIDE RANGE: (3, decimal code of character in question)
A character not in the allowed range of ASCII input characters has been
encountered. It is ignored.

4. INCORRECT SIGN CODE (2, code number)
An error, probably in the Translator or tables, has caused an invalid
bra-i 11a sign Or control code to reach the output processor. It is
processed as a blank.

5. BRAILLE STACK FULL (2)
An error, probably in the tables, has caused too many stack elements
to be requested in the S processor. Hie stack is emptied.

6. ERRONEOUS SIGN OR CONTROL CODE (3, code number)
Biis has a meaning similar to #4, with respect to the stacker (S processor).

7. UNDEF. CHAR.: (3 decimal code of character in question)
A character has been encountered that is not in the table-defined input
character set. (This is a finer test than for message #3.) The character
is processed as an asterisk (*).

3-20

8. EXCESS CHARACTER IGNORED: (3, decimal code of character in question).
An excessively long input word (group of contiguous nonblank characters)
has been encountered. Each character beyond the 4oth gives rise to
this message but is otherwise ignored.

9. OP c NEAR IAL a (0)
Processing has started on the output for braille page c, where c is
divisible by 10. The input line number is approximately a. (No NEAR
lAl/C ... line is produced with this message.) Bais message is to keep the
console operator informed of progress and also to provide a braille - vs.
-input cross-reference for later editing purposes. -

3-21

APPENDIX A SNIPAS COZE

Bae braille-equivalent editor’s code defined below is the work
of the late Richard J. Snipas, with some suggestions from others. It
sets up a 1-1 equivalence (substitution cipher) between the 64 braille
cells and the 64 printable upper-case ASCII characters, based on mnemonics.

The explanations given in the tables are for the most part in Mr.
Snipas’ own words.

The correspondence between editor’s codes such as the Snipas code
and braille should not be confused with the correspondence between
inkprint (translator input) and braille. For one thing, the latter may
not be one-for-one. As an example, the input sequence

1 world
would (presuming English rules) be translated into the braille sequence

i.e.
dots 3-4-5-6, 1, space, 4-5-6,2-4-5-6

which would be represented (assuming Snipas Code)
by the ASCII code sequence

1W

Note particularly the quite different (and unrelated) roles of the "I"
in inkprint and in Snipas Code.

A-l

Braille Dot .EquivalentCharacter

A through Z

0 (zero)

1
2
3
4
5
6
7
8
9
1 (Exclamation Mark)
" (Quotation Mark)
(Number Sign)
$ (Dollar Sign)
% (Percent Sign)
& (And Sign)
' (Apostrophe)
((Left Parenthesis)

4, 5

4, 5, 6
5, 6
1, 4, 5, 6
4
5
6
2, 3 , 5, 6

1, 2, 6
k 6
2, 3, 5
3, 5, 6
3, 4, 5, 6
2, 5, 6
lr 2, 4, 5, 6
1, 2, 3, 4, 6
3
1, 2, 3, 5, 6

Explanation

The letters A through Z are standard
braille configurations
Seldom used dot configuration — saves
confusion
Looks like print character
Looks like Braille 2
Braille "TH" sign — (thJree

Print 4 is dot 4
Print 5 is dot 5
Print 6 is dot 6
Nemeth code number 7
Braille "GH" sign — EI@T
Looks like print 9
Standard Braille
Standard Braille Right quote mark
Standard Braille
Standard Braille
Braille "ER” sign — Pg^CENT
Grade 2 Braille "AND” Sign
Standard Braille
Nemeth code

Character

) (Right Parenthesis)
* (Asterisk)
+ (Plus Sign)
, (Comma)
- (Hyphen)
. (Period or Decimal)
/ (Slash)
; (Colon)
; (Semi-colon)

«- (Left Arrow)
= (Equal Sign)

> f (Up Arrow)
w ? (Question Mark)

@ (At Sign)

[(Left Bracket)

] (Right Bracket)
\ (Backward Slash)
> (Greater Than)
< (Less Than)

(Space)

Braille Dot Equivalent i

2/ 3, 4, 5, 6
1, 6
3/ 4, 6
2
3, 6
4, 6

3, 4
2, 5
2, 3
2, 4, 6
1, 2, 3, 4, 5, 6
3, 4, 5
2, 3, 6
1, 5, 6

2, 3, 4, 6

1/ 2, 4, 6
1, 2, 5, 6
3, 5
2, 6
No dots

Explanation

Nemeth code
Nemeth code
Nemeth code
Standard Braille
Standard Braille
Standard Braille Decimal Point
Standard Braille
Standard Braille
Standard Braille
Looks like print
Nemeth code
Braille "AR" Sign — QrOW
Standard Braille
Braille "WH" Sign — fffiiJlTCH's H^t) (sorry
for the bad spelling)
Braille "THE" Sign and "ED" Sign — Left
Bracket t
plus Right Bracket spells "THEED"
No special reason for this one
Looks like bottom of Greater Than Sign.
Looks like bottom of Less Than Sign

SPECIAL SYMBOLS INDEXAPPENDIX B

Symbol Pages

3-18
3-13

$AS-IS 2-1, 3-H
$AUTO-TAB 3-4
$CTB 3-13
$COMPRESS 2-1, 3-4
$FR 3-13
$FL-LIFG 3-10
$FL-SPAN 3-10
$G 3-9
$G1 3-9, 3-10
$G2 3-9, 3-10
$HDE 3-3
$HDS 3-3, 3-14
$IND 3-14
$L 3-11, 3-12
$LEA 3-13
^Marking 3-4, 3-5 <-----
$NO-PAR 3-4, 3-U
$P 3-4, 3-U
$PAR 3-4, 3-7
$PG 3-12
$PTYE 3-14
$PTYS 3-14
^RUNNING 3-4
^SENTENCE 3-4
$SL 3-11
$SPACING 3-4
$STB 3-13
$TAB 3-12
$TLE 3-14
$TLS 3-14
% 3-5, 3-6, 3-7, 3-10
&(#) 3-8
&($) 3-8

B-l

Symbol Pages
&(%) 3-8
&(&) 3-8
&(+) 3-8
&(-) 3-8
&(/) 3-8
&(@) 3-8
&(cq) 3-9
&(cs) 3-8
&(ft) 3-8
&(Iv) 3-8, 3-10
&(oq) 3-9
&(sv) 3-8, 3-10
&(sym) 3-8
&? 3-11
&a 3-11
&ad 3-10
&ae 3-7, 3-10
&ag 3-10
&ax 3-11
&b 3-9
&CC 3-10
&d 3-11
&e 3-11
&ea 3-10
&ed 3-10
&eg 3-10
&ex 3-11
&i 3-11
&id 3-10
&ig 3-10
&ix 3-11
&n 3-11
&o 3-11
&od 3-10
&oe 3-10

B-2

Symbol Pages
&og
&OX

3-10
3-11

&u 3-11
&ud 3-10
&ug
&UX

3-10
3-11

i 3-11
3-6, 3-18
+ 3-6, 3-7, 3-17
-- 3-5, 3-11
— — — — 3-5

//
3-5
3-18'
3-18
3-4, 3-6, 3-7, 3-12, 3-14

= 3-6, 3-7, 3-18
3-6, 3-7
3-6, 3-7, 3-13
3-6, 3-19
3-6, 3-18, 3-19

or 't 3-6
3-6, 3-7
3-18
3-6, 3-7

B-3

REFERENCES
EBAE(72) English Braille, American Edition, 1959 (Revised 1972),

American Printing House for the Blind, Louisville,
Kentucky.

Haynes(68) R. L. Haynes, "Computer Translation of Grade II Braille"
Proceedings Conference on New Processes for Braille
Manufacture, 1968, American Printing House for the
Blind, Louisville, Kentucky, pp. 1-4.

Millen(70A) J. KU Millen, DOTSYS II: Finite-State Syntax-Directed Braille Translation, MTR-1829,.I'he.MITRE'Corpdratidn;..
(1W

Millen(70B) J. K. Millen, DOTSYS II; User's Guide and Transfer
and Maintenance Manual, MTR-1853, The MlTRE Corporation,
(1970).

RDOS(73) RDOS Real-Time Disk Operating System User's Manual
Data General documentOO3-000075-04.

Sullivan(75) J. E. Sullivan (ed.), DOTSYS III: A Portable Program
for Braille Translation, MTR-2119 (Rev. 1), The MITRE
Corporation (October 1975).

Sullivan(76A) J. E. Sullivan, The Duxbury Editor User's Manual,
Duxbury Systems, Inc. document DS-JES-/6O/04 (July 1976)

Sullivan(76B) 'J. E. Sullivan, The Duxbury Braille Table Preparation
Program, Duxbury Sy stems, Inc. document DS-JES-760/18
(July 1976).

UMF(74) User's Manual, FORTRAN IV. Data General Corporation
document no. O93-OO0O53 (July 1974).

ACKNOWLEDGEMENTS
This document was derived partly by copying the current DOTSYS III

description (Sullivan£75}), with extensive deletions, additions and
changes as necessary. The portions of that original document contrib­
uted by Dr. J. K. Millen and W. R. Gerhart of the MITRE .Corporation,
pertaining as they did to the original COBOL implementation and to
editorial procedures that have been altered, are not included in
the present description; but obviously their original work, especially
the basic algorithm design of J. K. Millen, and the painstaking
table work of both of them, remains an important influence on the
development of the system.

The continuing interest and contribution of R. A. J. Gildea,
original leader of the DOTSYS project and now consultant to Duxbury
Systems, Inc., and S. M. Simpson, President of DS, owner of the
facility on which the system was developed and knowledgeable contrib­
utor to the programming and myriad other matters, are also
acknowledged. Finally, the benefit of ideas from numerous other
persons, especially those who have used or modified DOTSYS, and those
who have expressed early interest in the Duxbury Translator and
have influenced its design, is also recognized.

G

Buxbunj S’ljatrins
Post Office Box 1523 July 23, 1976
Duxbury, Massachusetts 02332 Technical Memorandum
Telephone: 617-934-6627 Doc. #DS-JES-760723 /

To: General Distribution
From: J. E. Sullivan
Subject: Annotated example of EPROOF operation

EPROOF is a program to display the result of a Duxbury
Braille Translator run in a "proof" (printed dot) format.
Its operation is explained by the example of console dialog
below. The RDOS command EPROOF initiates the program.

DUXBURY BRAILLE PROOF PROGRAM 7/76 /
SOURCE OF TABLES?: (AMERICAN)--------------'
TABLES:
DUXSYS 7/76 87/19/76 08:32:20
USE TABLES LAST READ IN?: (YES)
SOURCE OF EDITOR’S CODE?: (TXEXERB>

FOR DOTS - WHICH ONE OF (.? *? 0?T?
EDITOR’S CODE?: |YES]----------------------
EXTRA SPACE?: (YES> —----------------
MORE EMBOSSING?: WYES]---------------
USE TABLES LAST READ IN?: YES
SOURCE OF EDITOR’S CODE?: TXSNIPASB
DESTINATION OF PROOF BRAILLE?: SLPT
FOR DOTS - WHICH ONE OF (.? ♦? 0?)?: 1
EDITOR’S CODE?: YES
EXTRA SPACE?: YES
MORE EMBOSSING?: NO
STOP

Name of the Tables used in
the Translator run.

If these are the correct tables.

Name of file (or device)
containing Translator output.

File or device to recieve printed

Selection of dot representation.

If editor’s code is to be
below the printed braille

For extra spacing between
printed braille lines.

printed
signs.

the

kTo recycle for more embossing.
Remaining responses are as
above.

R

THE DUXBURY BRAILLE TABLE PREPARATION PROGRAM
USER'S GUIDE

DS-JES-760718-00

Ordering No. DS-JES-760718 *
© Duxbury Systems, Inc., 1976

P. 0. Box 1523
Duxbury, Massachusetts 02332

All Rights Reserved

NOTICE

Duxbury Systems, Inc. (DS) has prepared this manual for
use by personnel, licensees and customers. The information
contained herein is the property of DS and shall neither be
reproduced in whole nor in part without DS prior written
approval.

DS reserves the right to make changes without notice in the
specifications and materials contained herein and shall not
be responsible for any damages (including consequential
ones) caused by reliance on the materials presented.

Original Release: July, 1976
Revised: October, 1976

Written for Duxbury Systems, Inc. by Joseph F. Sullivan

PREFACE

This document is intended to supplement the user's
guide for the Duxbury Braille Translator (Sullivan 76)
and explains how the separate Duxbury Braille Table Prepa­
ration Program may be used to alter the tables that drive
the Translator. A general explanation of how the tables
are used is contained in the Translator document.

This description corresponds to the Duxbury Braille
Table Preparation Program of 7/76.,

The appendices correspond to the tables DUXSYS 7/76,
release 8/9/76.

TABLE OF CONTENTS

PREFACE
INTRODUCTION.....______________________ 1..

PURPOSE....................................... .1
TABLE VERSION CONTROL...........................1

USAGE.................................. 2
OPERATION -- CONSOLE DIALOG............... 2
TABLE INPUT..................................... 2

Function and Ordering of Certain Tables
The Alphabet Table
The Contraction Table

Table Input Specifications
LISTED OUTPUT.................................. 8
BINARY TABLE OUTPUT............................ 10
EXCEPTION MESSAGES..................10

APPENDIX A - BRAILLE SIGN AND CONTROL CODES
APPENDIX B - STATE VARIABLES
APPENDIX C - INPUT CLASSES
APPENDIX D - RIGHT-CONTEXT CODES
REFERENCES

INTRODUCTION

PURPOSE
The Duxbury Braille Table Preparation Program may be

used to generate new versions of the tables that drive the
Duxbury Braille Translator, as described by Sullivan [76].
The tables are supplied with the Duxbury Translator and form
an integral part of the process described by the cited Trans­
lator document. However, circumstances may arise such that
the user may wish to alter or augment the tables. One such
circumstance might be a word, found to be incorrectly trans­
lated, that occurs so often in several texts that it is im­
practical to force the correct translation by special treatment
(for example, by the "//", "/_ ", and control symbols).
In such a case, an addition to the contraction table is called
for.

TABLE VERSION CONTROL
In accordance with the practice for DOTSYS III tables

(Sullivan [75j), since the Duxbury Translator tables are a
variant of these in both form and content, if changes are made
to a table that is shared by other institutions, a new version
has been created and it should be labeled according to the
authoring institution and date, e.g., "CNIB 11/76." Subse­
quent alterations at the same institution, prior to any external
distribution, need not be considered new versions.

Because table changes are an intricate process, it is
recommended that a detailed journal be kept of all such changes
and the reasons therefor.

1

USAGE

OPERATION -- CONSOLE DIALOG
The RDOS command PREPARE starts the preparation program.

The following dialog illustrates and explains the dialog that
then takes place at the main console. Note that the program is
a simple "command interpreter" -- thus more than one table can
be processed by one activation, and more than one copy of a
processed table can be produced (by giving several "writes"
before another "read" or "stop"). All "files" may be either
named disk files or device names.

DUXBURY BRAILLE TABLE PREPARATION PROGRAM 7/76
FIRST COMMAND ASSUMED READ
SOURCE OF TABLES?: IBRLTBS1
DESTINATION OF LIST?: (1L£T|--
FOR PREPTB - WHICH ONE OF (READ7WRITE7STOP?) ?: (2p)
DESTINATION OF TABLES?: (BRLBN)—----------------------------------- —7
FOR PREPTB - WHICH ONE OF (READTWRITETSTOP?) ?: g|
STOP NORMAL END T
R U

File containing
input tables
File to receive -
listing
File to receive
binary table output

Selection of Command
1. Read & process

input table
2. Write out current

binary table
3. Stop

TABLE INPUT
Function and Ordering of Certain Tables

The Alphabet Table
The alphabet table identifies all legal text input charac­

ters. The order of input is arbitrary, but is related to that
of the contraction table (see below).

The Contraction Table
The contraction table contains not only contractions but

many other sequences related to the heuristics of the trans­
lation process, and the definition of special .control symbols.

Entries in the contraction table beginning with the same
symbol must be grouped together, and these groups must be arran­
ged in the same order as the corresponding symbols in the alpha­
bet table. Also symbols in the alphabet table that have no
corresponding section in the contraction table are grouped, in
any order, at the end of the alphabet table.

Within a section of the contraction table determined by a

2

common initial letter, all entries having a given second
character must also be grouped together. The order of
input of these subsections is completely arbitrary and
usually will vary from section to. section- as a-function of
conditional frequency. This grouping scheme is continued
right up to the 10th character. In general, if two entries
agree through the nth character, then all entries between
them must also agree with them through the nth character.
Table Input Specifications

The following pages define, by means of an explained
example, the format of the input tables to the Preparation
Program. Note that the illustration does not include the
middle of the alphabet table, the middle of the contraction
table’nor the end of the sign table. Note also that this
illustration does not necessarily correspond in the parts
shown to the tables of 7/76 as distributed.

3

col. 1
Table Version (Title), up to 20 characters

*
SP

<■
Symbol to replace illegal
characters in Translator
input

Symbol to be used as delimiter
(throughout tables); to be
ignored in Translator input

• _contrc
SHUNNING
SSPAGING
SAS-IS
SCOMPRESS
SSENTENCE
SAUTO-TAB
SPAR SNO-PAR J

5 0 64 PJ
E 1 17 17 LAI
Alli LA
S. 1 14 14 LAI0 1 39 30 LAI
I 1 10 10 LA
0 1 21 21 LA
L mt 7 LAI
R 1 23 23 LAI
N 1 29 29 LAI
C 1 9 9 LAI
D 1 25 25 LAI
P 1 15 15 LAI
M 1 13 13 LAIU 1 (37j3F LAI
= 3 16 32 PL
. 3 8 50 P
B 1 3 3 LAI
F 1 11 11 LAI
V 1 39 39 LAI
G 1 27 @7) LAI
W 1 58 58 LAI
Y 1 61 61 LAI
H 1 19 19 LAI
K 1 5 5 LAI
J 1 26 26[UAI
(1 1 31 31 LAI
X 1 45 45 LAI
Z 1 53 53 LAI
- 3 36 36 PJ
12 2 1 PN
0 2 52 26 PN
8 2 38 19 PN
6 2 22 11 PN
2 2 6 3 PN
5 2 34 17 PN

Define symbols for
paragraphing, new
line, tabulation,
direct braille, capitalization, termination sign

ol symbols. Note that these are related to some other table entries.
and the starting character for

~ Define the input symbols for basic text handling. Note that
these are related to some contraction table entries.

Alphabet Table

allowable input symbol (define letters in u.c.— l.c. letters are changed
to u.c. for comparison*with these tables) (Note that the first entry
defines the space.)
transition class (to be used if the letter is translated singly, i.e. if
no contraction table entry applies in a given case) See the transition
table, below.
"Computer-braille Sign Code" — from DOTSYS Ills not used by the
Translator.

sign code (see sign table, below, and the Appendix on sign and control
codes) to use if the letter is translated singly

A "right-context class" to which this letter belongs (see the Appendix
on this subject). There may be up to 16 distinct classes defined; a
symbol may belong to any of them.

There may be up to 64 symbols defined; they must lie be­
tween ASCII code 32 (space) and 96 (backwards-apostrophe)
inclusive, and not include the delimiter character (above)
nor (by implication) the lower-case letters.

3 44 73 PJ
•t 3 57 38 PJ
t 3 46 22 PJ
1 3 48 06 PJ
(3 62 54 PJ
) 3 55 54 PJ

3 60 60 PJ
+> 1 63 48 L
A 0 0 0 4—'

col. 1

Delimiter (end) of alphabet table.

Ln

IN * 01 03 64209999
WAS * 01 04 64529999
WERE * 0J 05 64549999
CBE * 1 01 03 64069999
HIS * 01 04 64389999
ENOUGH * 07 64349999
A inT J 64489999 \
A 15 01 64999999 \
ED * 01 02 43999999
EDACIOUS* . 18 04 17250109
EDOWN* 01 05 17254229
EDOM* 01 01 17999999
EDITION* 18 03 17251099
EDICT* 18 01 17999999
EDENTA* 18 01 17999999
EDUCE* 18 04 17253709
EDROP* 01 04 17252321
ED* 01 02 43999999
ER * ■ . ■ - 1 01 02 59999999
ERA* L 18 03 17230199 ___
ERECT* O104 17231709
EREC* 06 04 17231709
EROOM* : 01 04 17232121EROD* ' 18 04 17232125
EROSION* 18© 17232199
ERUPT* 18 04 17233715
ERUP* 06 04 17233715
ERUC* 06 04 17233709 .
ER* 01 02 59999999-Z**?
ENCE* 04 04 §$>179999
ENESS* 01 05 17481499
ENEDI* 01 04 34172599
ENU* 06 03 17293799
ENOR* 06 02 17299999
ENOUN* V' ' • 06 05 17295129 .
EN* p 06 02 17299999
EN* 01 02 34999999

♦ EAR* 01 03 17289999
EALLY* 01 05 17326199
EALOGY* 01 04 17010721
EADE* p 01 04 17012517
EADD* 01 04 02252599
EAX* 01 03 17014599
EAPP* 01 04 17011515
EABLE* 01 05 17016099

col. 18, ‘ ■ •
Contraction Table

Exact string to be matched, delimited by (and not including),
delimiter character. Note that this entry begins with a blank,
Capitals in the input will be represented by an "«=•' (or
whatever was defined above) immediately preceding the letter
(transformed to upper case regardless of input), (See the %=>
entry below.) • , '

•Right context class codes to check for the first and/or second'
following character. A blank for either implies no class check
for that position. (This entry would look for the pattern;
space, character in class ”1”, character in class "J".)

Input class, implying a decision class and transition class as
defined below, , ■ ' (
Number of inputicharacters to shift if this entry applies.

■Sign or control code to issue if this entry applies. There
are up to four of these; the first "99" terminates (and is
not included in) the sequence.

The allowable size of the contraction table varies
with installation; an output (see below) will give
guidance on this.

/-MAS-/*
Z_WERE_ZA
Z_HIS_Z*
Z_LETTER_Z
Z_INTO_Z*
Z_TO_Z~
Z_SH_ZA
8-'

34 4----—-r
12 1

01 06 06999999
01 06 52999999
01 07 52999999
•01 08 54999999
01 07 38999999
01 10 07239999
01 08 20229999
01 06 22999999
01 06 41999999 .
21 02 99999999

. 28 1 32049999
14 1979099990 0 0 0 0 0-4

Col. 1

. k/ ‘ 4; ■ /k;/k : •/
Delimiter for contraction table

' ' .'k ' '-K ‘ -k.’J'/ h i

Input Class Table k
No. of input classes (not over 50)

|—— _____ ' _____ __ Input class number (these must go strictly in
4 3 i 1 sequence)

*. 7 ©5: ~ ------------ Decision class corresponding to this input class. .
8 7 ■■ 5k'' k.. ‘ ' k k kkk ,k kkl/ k ,; 9 8 5 Rkk.k ■■■ I ' ' k , , .

t0 djr..........--...........—>-——— Transition class corresponding to this input class..
; 12 1 8 : 1
’.IS ; 1 • 9 k . /...'■ . ’ >•
14 1 ' 5 • ; ,kl5 15 10 k . • .. ' k ' '1 ‘
16 2 5 , ■,
17 6/11 kkkk'- ' • k ‘
18 6 1 /k ■■/'■- • / '• ’

k 19 s :i2 kkk k
20 11 ‘ 1 dk ■■.••■■ k : * , ..
21 i .13 ■■’:■ / ■ ' - ! k,
22 12 : 1 ' ’k! ■■■■/- 1 !
23 13 ; 1 •: “ i „ 4 4 m ' ■ k .* ■ ' ■24 14 i Decision Table
26 i 15 :----------- No. of decision classes (not over 25).27 15 ■ 3 ' / , ' ' .
28 116 (: ■'/>>:././kk'
29 1 17 / '
38 i 18 / —------- ;———~—Note this entry requires no particular setting of
31 16 19 / / state variables (see next page)
32 5 20 / 7 •
33 17 21 7 ■ ■ 7 . , ‘
34^ 17 5 X 7

'■ --------^—7 .
2 F F• 3 F TF . ? - -“kk kkk '/ ■'

* f *
col. 3

Decision class number (these must go in sequence)

A
IB »
K"

' /* F ' - G ', (5] FF F F / .—-r——
6 F ' FF :■ '
7 TF F • • ■
8___ FT F .'■
9 [F]F F
11
12 F
13 T
14 T
15 T
16 FF T
17. F F

F'/
F T
T:
FT
F ' "'/J
ft
F <
F -’ f - -i;
f t

. • ■

1

<211
1 RS
2 SR
3 R
4 t

SRR —
RRR
RRR ;

! <5)RR
L 6 RRS
i: 7 RR R
BRI

RRR ’ "
RRR R
RRR R
SRRR
RRRR10 {RR

11 RS
12 RS
13 RR
14 RR
15 RR
16
17 S
18 R
19
20 RR

RRS ~~
RRR
SR
SRR
RRRS
RRRR ,
RR
R
R
RR S
RRR S

21 RR RRH R t—

A
♦B

A state variable condition. This one (in col. 5)
applies to state variable 1 (see the appendix) and
demands that it be "false" or "off." T is used for
"must be true” and a blank for "don't care." For
example, this entry requires 1, 2, 4 and 7 to be
"false." Up to 16 state variables may be referred
to in this and the transition table.
Transition Table
No. of transition classes (no more than 25).
Transition class number (these must go in sequence).

(in col. 5) is

or "off")
"on")
logical "not")

reset (turn to ’’false"
set (turn to "true" or
toggle ("change," i.e.
no change

1 .
2
3 .

.; 4 _
6
7 rr"
8 .
9 ..
10 .
11 ..
12 .
13 ..
14 .

115..
J 16
17 .
18

J— I 1.. JJL L
7.
C
I

: F .

. S ■

. P
5

- ' E

4
c
I

M
S
S
E

A transition definition. This one
for state variable 1; The code is

R

' T ' ' ■
blank

Sign Table
-Sign codes for the digits 0-9
- Sign code for the number sign
Sign code for the decimal point

—-—Sign code being defined. These must go exactly 1-64
in sequence.

—Dots for this sign, starting in col. 5 1b the order
1» 2, 5» 3» 6. (Used for Preparation Program display
only, no significance to Translator.)

——- "Mnemonic" for this code, up to 3 characters. (Also
used only fbr Preparation Program display.)

—— Output (editor's) code corresponding to this sign. As
described in the Translator document, this symbol is also

, used in input under some circumstances.

LISTED OUTPUT
The output listing is for the most part an echo of the

input, with some adjustment of the spacing and headings
added. An extra section is the "Compiled Alphabet and
Contraction Tables," a merged listing of these two tables
as illustrated and annotated on the next page.

A comment will be printed at the end of this list,
giving the total number of entries in the contraction table
and the number allowed, and also the space used by the table
(in bytes) and the number allocated. (The limits are applied
jointly; i.e. neither can be exceeded.) The space used is
a complex function of the entries. An entry will generally
take less space if it

(1) has fewer symbols in the recognition string;
(2) has fewer, right context checks;
(3) uses input class 1;
(4) shifts 2 characters of input; and
(5) has fewer sign codes to output.

8

xD

Z_TO_ZA
Z-SH_ZA
f-'' eA

1 6 22999999
1 6 41999999

21 2 99999999
28 1 32 49999
14 1 97909999
0 0 0 0 0 0

COMPILED ALPHABET AND CONTRACTION TABLES:
AN = ALPHABET ENTRY NO.
S = SYMBOL
TC = TRANSITION CLASS

j ■ 1 ■ I 1r- Heading Explanations
SG = BRAILLE SIGN [■ .
CS = COMPUTER BRAILLE SIGN
RC ■ RIGHT-CONTEXT CLASSES (NUMERIC)
CN = CONTRACTION ENTRY NO.
ST = STRING
RC = RIGHT-CONTEXT CLASSES
IC = INPUT CLASS
8H = SHIFT AMOUNT
SG = BRAILLE SIGNS

an s TC sc cs rc <—------ 1----------------------------Alphabet table headings
RC IC SH SG <------ - Contraction table headings
Right-context classes

5 (numeric) (255tsnone)

CN ST

Alphabet entry (note symbol is blank)

1 IN A 255 255 1 3 64 20 99 992 WAS A 255 255 1 4 64 52 99 99 43 WERE A 255 255 1 5 64 54 99 99 -14 BE A 255 255 1 3 64 6 99 99 55 HIS A 255 255 1 4 64 38 99 99 66 ENOUGH A 255 255 1 7 64 34 99 99 77 zs 4 1 14 1 64 48 99 99 88 z* 255 255 15 1 64 99 99 99 0

-"Blanch" — added automatically to J n-rl+_s,_+1
speed searching in the Translator, f

2 E 1 17 17 2 3 4

9 D A 255 255 1 2 43 99 99 99 1910 DACIOUSA 255 255 18 4 17 25 1 9 1111 DOWNA 255 255 1 5 17 25 42 29 1312 DOMA .255 255 1 1 17 99 99 99 -213 DITIONA 255 255 18 3 17 25 10 99 1514 DICTA 255 255 18 1 17 99 99 99 -2
15 DENTAA 255 255 18 1 17 99 99 99 16

BINARY TABLE OUTPUT
This file is in the tables in an internal, compacted

form required for input to the Translator.

EXCEPTION MESSAGES
The general-purpose comment
** TABLE SEQUENCE ERROR **

appearing in the listed output means that a violation of
one of the input ordering or size restrictions has been
detected. The binary table generated in such cases will be
invalid and should not be used with the Translator.

In the special case of the contraction table "space"
capacity being exceeded, the comments

* * * * CONTRACTION TABLE CAPACITY EXCEEDED
STOP JSTO

will appear on the console, and the run will stop abnormally.

10

APPENDIX A Braille Sign and Control Codes

Code Meaning

00
01-6?

64
65 1
66 c
67
68 e.
69 J
70 ?
71
72 '■
73 '
74 -k
75
76

77-80
81 ■
82 '
83 /
84 '
85 h

required blank
braille sign codes
end of braille word (blank or end of line)
new line (if not already on a new line)
unused (reserved for: line composition function)
paragraph start
one-time tab (skip to col. nn)
new page
new line (unconditional)
skip (multiple lines)
tab (skip according to permanent tab)
tab to next stop
’’flush right" tab
set left margin
clear tabs
unused (reserved for: line composition function)
start heading input
end heading input
unused
set continuous text stacking mode
idle (reserved for: reset continuous text

stacking mode)
86 -
87
88
89 '
90

91-92
93 '<

unit of measure (reverse stack)
unused
start running title input
end of running title input
accept input text directly until blank
idles (reserved for: self-checking mode)
set tab stop

95 1
96 '
97 i
98
99

idle (reserved for: octal braille)
start poetry mode
end poetry mode
start direct braille
end of run
(filler in contraction table)

APPENDIX B Input Classes

No. Characteristic of

1 contractions always used in grade 2
2 digits
3 most punctuation and control ($) symbols
4 contractions used after the start of a word
5 $G (grade switch)
6 contractions used at the start of a word
7 isolated full-word contractions
8 $P" (start paragraph in quotation)
9 $P (start paragraph in italics)

10 " (left quote) — outer
11 ” (right quote) — inner
12 (begin italics)
13 _ (last word of italics)
14 (space), certain control ($) symbols
15 A to J or space occurring in a number
16 contractions always used in grade 2 containing

terminal punctuation
17 prefix or first word of compound word
18 non-prefix beginning of word
19 first entry of double entry
20 second entry of double entry
21 "forced” contraction begin sign (/_)
22 units of measure and numbers following numbers
23 Foreign language special symbols
24 Spanish special symbols
25 $FL-SPAN
26 $FL-LIFG
27 decimal point (.) within a number
28 termination sign
29 $G1
30 $G2
31 inner left quote

v 32 isolated-letter sequences starting with ”
J 33 final quote of an isolated-letter sequence

34 isolated-letter sequence within quotes

APPENDIX C State Variables

No. Definition (meaning if "true")
1 after the start of a number
2 after the start of a word
3 grade 1 translation
4 in a quotation .-1 -
5 in italicized text
6 not at the start of a prefix or stem
7 part way through a word or phrase too long

for one entry
8 just after a space (or A-J), following a number
9 Foreign language passages are Spanish

10 within an inne^- quote 5.
11 within an isolated-letter group preceded by "

APPENDIX D Right-Context Codes

Code Class
A alphabetic characters (letters)
I . letters isolated (not words) when alone
J punctuation that, if following an isolated

letter, implies that a letter sign is needed
L letters and special symbols preceding or

acting as letters
N numbers
P punctuation
Q the double quote character

REFERENCES

DS-JES-7607.16 (July 1976)

Sul l ivan 75 J. E. Sullivan (ed.), DOTSYS III: A Portable

Program for Braille Translation, MTR-2119 (Rev

1), The MITRE Corporation (October 1975)

Sullivan 76 J. E. Sullivan, The Duxbury Braille Translator

User’s Manual, Duxbury Systems, Inc., document

