
DOTSYS Ill : A PORTABLE BRAILLE TRANSLATO R

b y

Joseph E . Sulliva n

Backgroun d

The subject of Braille translation is not a widely familiar one, so that a brief introduction to that topic would seem t o
be in order before taking up DOTSYS III o Most people know what Braille is in general - a coding system employing raise d
dots so that the sense of touch alone suffices to read . However, contrary to the impression one gets from those little cards ,
the most widely used codes are not "substitution ciphers" - that is, the Braille equivalent of a given "inkprint" text i s
generally not a simple transliteration but rather a kind of translation . This is because the rules for transcription involve no t
only the spelling of words, but also their syllabification and pronunciation . And since these occasionally vary with th e
meaning of the word (e .g ., the verb "do" and the musical note "do") the transcriber most understand what he is transcribing ,
at least at a superficial semantic level . This is characteristic of translation, although of course the process is not nearl y
as difficult as the translation of one natural language to another .

The actual rules of Braille will not be treated in any great depth here; the various codes differ from language t o
language and, even within a language, from situation to situation . In this country there are three standard codes : one
for general, "literary" use] , one for scientific notation 2, and another for musical notation 3. A fourth standard4 cover s
formatting rules . In addition to these, a number of more-or-less widely used codes exist, ranging from simple transliteratio n
codes such as"Grade 1" and "computer Braille" to a Braille shorthand . Unless otherwise indicated, we shall be referring to
the literary code, sometimes called Grade 2 Braille . This code requires some sixty pages of rules to define .

The basic unit of Braille is a "cell" comprising six dot positions, three positions high and two wide . These are labele d
1-6, counting downward first on the left and then on the right . Each position may have a dot or not ; thus there are 2 6=6 4
possible combinations . In a given piece of text, there will typically be a number of cells that stand one-for-one fo r
characters in the inkprint counterpart . However, the general rule is that a group of one or more Braille cells will correspond
to a group of one or more inkprint characters . In order to reduce the space required by Braille and correspondingly improv e
the reading rate, the rules are so contrived that the Braille group is almost always shorter . The chief device for doing thi s
is the contraction . One-hundred-eighty-nine commonly-occurring letter groups have a short Braille form that substitute s
for full spelling in some circumstances . Generally, these circumstances are dictated by the fact that a given Braille sig n
may have different meanings depending on context - e .g ., the sign for a period and the sign for the letter-group " dis " ar e
one and the same, so that a contraction may be made when the letters appear at the beginning of a word (e .g ., "dislike")
but for the obvious reason full spelling must be used when they occur at the end ("Charybdis") . Braille is riddled with such
context dependencies, including "case" and "escape" codes to permit representation of inkprint effects such as italics an d
to shift interpretation modes - even the digits use the same signs as the letters a - j . However intricate rules covering these
cases may be, they are still mechanical and thus not the worst complication in Braille translation . The difficulty lies in a
group of rules that forbid use of contractions where syllabification or pronunciation would likely be thrown off; for example ,
the "the" contraction should not be used in "sweetheart" because the letter-group straddles a strong syllable boundary . And,
as previously noted, syllabification and pronunciation cannot always be determined without ascending to the level of meaning .

General Function of DOTSYS Il l

DOTSYS III is a computer program to translate inkprint into Braille as automatically as possible . But since th e
determination and representation of deep semantics is beyond the current state of the programming art - at least for natura l
languages used in unrestricted context - it is clear that a program to produce perfect Braille automatically is not technicall y
feasible . DOTSYS III represents a compromise between the perfect and the possible . The occasional flaws in its translatio n
can be removed by human intervention or, in some situations, simply left in as an acceptable level of "misprints" .

14

The program proper does not embody the rules of English Braille, but rather a generalized process appropriate to th e
larger inkprint-to-Braille problem . A set of tables specify the process for a particular code or related group of codes . A
single set of tables (with many versions!) presently implements English Braille, with intermixed Grade 1 and compute r
Braille permitted . It appears that a table for Grade 2 Spanish Braille can be implemented quite easily . This flexibility of
changing translation rules by altering tables is motivated not only by the possibility of switching codes but also by th e
expectation that, even for a particular code, a long process of refinement (with occasional special-purpose temporar y
modifications) will take place .

Thus the program was designed with two primary goals : fidelity to the standard Braille rules and flexibility to adapt
to the various codes, their interpretations, and application contexts . Two additional goals were : "portability " of th e
system from environment to environment, and comprehensibility of the system so that it would be a known quantity to it s
users, and to facilitate local adaptation . It was chiefly with portability in mind that COBOL was chosen as the syste m
programming language , even though languages more capable in other respects were available .

The Algorith m

The basic algorithm is a modified finite-state process devised by Dr . Jonathan Millen 5, It is perhaps easiest t o
understand the algorithm by observing it in action on a particular case, using the English Braille tables .

First, let us assume that some text has already been translated . The input, seen through a 10-character "sliding
window" (underlined), looks like

. . . THIS DISEASE IS NOT SERIOUS . .

The first step is to locate a qualifying entry in the main translation table, which in this case contains about 1,000
entries . In principle, though not in actuality, the table is searched serially . The entry in question is :

1â ISI

	

L

	

6

	

3

	

50-- -

In order for an entry to qualify, three distinct tests must be passed . First, the left end of the window must match th e
entry as far as the

	

" . Secondly, the next character beyond this point must fall into the "right-context class" designate d
by the second field of the entry . In this case, "L" has been defined (by another table) to mean "letter" . Thus it is clea r
at a glance that the first two qualifications are met . The third qualification is determined by the "input class" - in thi s
case, class 6 . This class selects an entry in a decision table and in turn this entry imposes a boolean test on a set o f
conjunctions . The state variables themselves are simply true-false indicators deriving "meaning" only from the logic of a
particular set of tables . For the literary tables, the set of state variables and their approximate meaning is as follows :

I) after the start of a numbe r

2) after the start of a word

3) Grade 1 translatio n

4) inside a quotation

5) inside italicized tex t

6) Not at the start of a prefix or stem

7) part-way through a word or phrase too long for one entr y

8) just after a space or A-J, following a numbe r

Getting back to our example, the decision table entry for class 6 will demand that states 2, 3, and 7 all be "off" -

i .e ., we must be at the beginning of a word, in grade 2 translation, and not looking for the second part of a double entry .

All these will apply in this case, so the entry qualifies . Had it not qualified for any reason, then the translation tabl e

search would have continued ; and if no entry qualified, the single leftmost character would be translated according to an

assumed (default) entry .

Once an entry is accepted, three actions take place . First, up to four Braille signs and/or program control code s

are issued . In this case "50" selects the dots 2-5-6 cell representing the contraction "dis" . Second, the window i s

shifted a certain number of places, in this case, 3 :

15

. .. THIS DISEASE IS NOT SERIOUS . .

Finally the input class selects an entry in the transition table . This entry determines the new setting of each stat e
variable : set, reset, changed or unaltered . In this case state variable I, 7, and 8 will be reset, variables 2 and 6 will b e
set, and the rest will be left unchanged .

The input class is thus the key to the state setting and testing logic . It tends to be the same for most contractions of a
given type - class 6, for example, is characteristic of those contractions used only at the beginning of a word .

it may be noted at this point that " disease " is one of those odd words whose contraction depends on meaning . When
used in the usual sense, the next two letters (ea) should be contracted as a dot 2 cell, However, when used in the archai c
sense of "lack of ease", the following rules combine to forbid the use of the contraction :

Rule X Par . 42: The lower-sign contractions for ea and (certain others) . . . must never begin or end a word . "
Hence "ease" is spelled out .

Rule X Par . 34 b(1) :

	

. . a contraction must not be used where the usual Braille form of the base word would b e
altered by the addition of a prefix or suffix .

Naturally, the standard table will contract the ea . if the input preparer knew that the archaic meaning was intended ,
he could flag the input to inhibit contraction (as will be discussed later under "Special Features") or, if a large work use d
the term so often that this approach would be irksome, another entry - perhap s

DISEASE

	

-

	

6

	

6

	

5017011 4

inserted before the DIS entry, would suffice to alter the logic for just this word and its derivatives .

Organization of the Progra m

Although the process just described is the heart of the matter, there are a good many other details for the program t o
attend to : input handling, output control for a variety of devices, line and page formatting including running titles ,
pagination and special formats, and provision for special rules, one of the most troublesome is the requirement that a numeri c
quantity followed by a unit of measure must be represented in a standard form with the measure first following by the quantity .
The order reversal is controlled by the tables but provision to perform this operation must be supplied by the program .

The program comprises five modules, or, if you prefer, "levels of abstraction" . The processor at each level is organ-
ized around some characteristic resource, and operates as a logical coroutine, sharing narrow interfaces with the other levels .
At least, that is the basic idea - or rather, the idea that crystallized after too much of the program was running to conside r
a strict restructuring along these lines . Nevertheless, these structural modularity concepts are present in sufficient degree t o
form a model for explanation .

The first module is the primary input processor . Its main job is to accept the inkprint text stream, discarding certai n
extraneous control markings (such as record boundaries) and filler blanks, and produce the "window" for the translator . When
"self-checking" is in effect (see the next section), the input processor also computes the "correct translation" of eac h
inkprint word and places it on a ring buffer for later comparison .

The second module is the translator itself . The main logic has already been discussed . The output of this processor i s
simply the stream of Braille signs and special control codes exemplified by the "50" in the sample shown .

An important submodule of the translator is the main table look-up, which implements a logically serial search bu t
capitalizes on the fact that whole portions of the table can often be bypassed when failure to match the window content s
occurs on a particular entry . There is an input ordering restriction : entries whose first n letters are alike must be groupe d
together . However, this does not reduce the generality of logic supported by the table . Using at most one extra pointe r
per entry, "chains" are set up so that all first entries for the characteristic second-letter groups are linked and so forth . A
significant reduction in search time, at minimal cost in space, is effected by this technique .

A third module, the stacker, operates on the codes issued by the translator . In the simplest case, these codes are merel y
accumulated until the code for the blank Braille sign is received - i .e ., a Braille word is finished . This word, constituting
one entry in the stack, is normally then removed from the stack and issued as output to the line composer module . In some
circumstances, two or more words may be held in a stack before release . This may be to effect order reversal, or to grou p
words for running titles or centered headings . If "self-checking" is in effect, it is the stacker that compares the actua l

16

translation with the correct translation left on the ring buffer by the input processor . The ring buffer allows for the logica l
lag in the various processing stages, and permits recovery from synchronization problems that occur when, as occasionall y
called for in the rules, several inkprint words are run together into one Braille "word" .

The line composer, the fourth module, operates on the Braille words produced by the stacker . It concerns itself wit h
arranging the words on a Braille line, starting a new line or new page when necessary, page numbering and titles, and s o
forth .

The fifth module, the output writer, is actually a collection of processors, one for each distinct mode of output, a s
listed in the next section .

SPECIAL FEATURE S

Formattin g

The program incorporates a number of special formatting options, including automatic pagination and numbering ,
centered titles, and a "poetry" (hanging indent) format . An extensive system of "typed" tabs permit easy alignment o f
columnar material on the left, right or decimal point within the entries . In general, the selection of options, the settin g
of modes and tab values, and the issuing of direct format controls (e .g ., "skip to new page") is accomplished by command s
embedded in the input text .

Output Device s

At present, the program can drive five output devices, or any combination . Two of these are "printer Braille" : a
form of embossing accomplished by printing periods on a standard line printer with a resiliant backing inserted between th e
paper and the platen . The periods dimple the paper so that the reverse is a crude form of Braille . With a printer set for
normal spacing the size of the Braille cell is far off the standard, but a special IBM modification, in conjunction wit h
slightly different program output logic (hence the two "devices"), can bring the spacing back into acceptable range .
This is the technique used by the Atlanta Public Schools .

A high-speed embosser developed at MIT E can also be driven directly by the program . In a typical configuration, th e
program is running under a time-sharing system such as Interactive Data Corporation ' s virtual machine system, with th e
embosser slaved to the user ' s terminal teletype . The teletype can be used for entry and editing of text as well as an inter-
mediary for the embosser output .

One form of output, the "proof", is intended for the use of a sighted editor . The proof contains an echo of the inpu t
and the resulting Braille printed as dots .

Finally, a card output, containing numeric codes for the Braille signs, is provided for general interface purposes .

Direct Translation Contro l

Although not strictly a function of the program, the standard tables provide a means for inhibiting a contraction tha t
would otherwise be made, or for forcing a contraction that would normally not occur . In most cases of mistranslated words ,
this is the easiest way to correct the Braille .

Self-Checking

Early in the development of DOTSYS III, it became apparent that some automatic means was necessary for checkin g
on the quality of Braille translation achieved by a given table - and especially after a series of changes, to see that n o
unwanted side effects were introduced . This need was met by preparing an input text containing 5,808 "problem" words
used in training human transcribers, with special markings to indicate the correct translation . The program compares th e
normal output with the correct Braille, flagging misses with a code in Braille and a large TSK on the proof output .

HISTORICAL NOTES AND WORK TO BE DON E

DOTSYS Ill is by no means the only Braille translation program, although it is one of very few that attempts tp
produce Braille in accord with the existing standards . The programs at the American Printing House for the Blind9, '2, 1 7

17

were in use for some years prior to DOTSYS, but unfortunately they are in machine language and hence not portable . A later
P1/I program by Dr . Lois Leffler 13 also adheres to the standard .

Those programs that deviate from the standard usually do so for eminently practical reasons, for as we have seen th e
Braille rules are not designed for easy automation, and in many situations quantity and speed is simply an overriding con-
sideration . Beyond this, there are those who argue that the rules are not even well designed from the human standpoint ,
and that a major redesign friendly to man and machine alike is called for . I4 Despite much technical merit in such proposals ,
it is clear that the investment already sunk into training and literature inventory (and - yes - computer programs!) will weig h
heavily in favor of the existing standards, with perhaps some local improvements, for some time to come .

The development vfDOT3Y3 U! was carried out at MITRE under the direction of Robert A . J . Gildea, presentl y
chairman of SIGCAPH, under contract with the Massachusetts Institute of Technology Sensory Aids Center and th e
Atlanta Public Schools Computer Braille Project . Professor Robert Mann of MIT and Dr . Marion Boyles of Atlanta directe d
the project at their respective establishrnents/ 6 Messrs Vito Pro,c/uo ^6 George Dalrymple of MIT, and Robert Lagrone an d
Donald Bell of IBM and Atlanta, were also instrumental in various phases of the project, especially in helping to improv e
the translation quality while integrating the program into their operating environments .

The original technical development was Dr . Jonathan Millen's DOTSYS U program . 8 This pilot program implemente d
the basic algorithm, and even with a relatively simple set of tables produced Braille good enough that further developmen t
into a production capability was clearly in order . Mr. W. Reid Gerhart and the author thereupon set out to refine the tabl e
and to retrofit the program with most of its present formatting capability, including units-of-measure order reversal . In the
process, the table search was improved to its present form and self-checking was introduced . Some modularity was intro-
duced into the output section, so that new device types could be introduced easily . In fact, the MIT Braillemboss modul e
was not added vntil after the first delivery of the program to Atlanta in August 1970 . That brought the program to essentiall y
its present form, although onum6e, of minor fixes and improvements have been made since, many by the users themselves .
In this regard Dr . Judy Gunnerman and Messrs Philip Bagley and John Covici of information Engineering deserve specia l
mention for considerable work with the program, including the preparation of some additional program logic documentation .

As expected, evaluation of the tables is a continuing p,oceu . Most of the entries are determined in the light of th e
hindsight arising fromp particular mistranslation . A table of contexts for contraction use I5 is typically used to aid in makin g
the table entry specific to the desired cases, and the self-checker is used to verify that no bugs have been introduced .

It might be well at this point to examine how well DOTSYS has met its goals of fidelity, portability, flexibility an d
comprehensibility . As for fidelity, there seems to be general agreement that a consistently high quality Braille is achieved .
Even inthe5,8V0 "problem" word text, for example, fewer than 200 mistronJaonns°e,e made - most of them on farfetche d
concoctions such as "abecedarian" and the archaic "disease" . In more /ypicol text, the error rate is fewer than one in te n
pages . Portability also seems to have been successfully achieved, thanks largely to the ubiquitous COBOL, although th e
size of the program (59K bytes, with the tables, on a 360/370) is more restrictive on minimum size than we had hoped woul d
be the case .

Flexibility of the tables is a built-in fact, but flexibility of the program itself to add new formatting capabilities, or
new output devices appears to work out only for the original programmers, as in the case of the MIT embosser . This speak s
unfavorably of the program's comprehensibility, which seems to be the chief user complaint despite extensive funcouno l
docvmontot/on . 10 Some of the difficulty may no doubt be chalked up to the mvmol interference of three "cooks" workin g
on one program, or the fact that none of the three had programmed in COBOL before (and they haven't since), or th e
verbosity and lack of block structure in COBOL, or simply to the fact that perhaps 80 percent of the present 1,600 lines o f
code is retrofitted . In the opinion of the author, however, the basic problem woso very familiar phenOmenon : the prope r
structure of the program was not and could not, as a pmcticol matter be recognized until the point was past where a tota l
restructuring was thinkable, Deadlines, a tight budget ondo bird-in-hand in the form of running code can conspire in a
sort of tyranny over one's options despite what is obviously desirable technically .

In any event, this issue has been revived in the form of an effort, under Air Force auspices, to rewrite DOTSYS III a s
a case study in the principles of structured programming .

Finally, plans are being made to expand the scope of application from the English literary code to other language s
and possibly the scientific (Nemeth) code . The former will probably require no more than a table change in most cases .
For the latter, a preprocessor will probably be necessary to convert from a reasonable input language, yet to be designed ,
into a text that defines complicated formats unambiguously and is acceptable to DOTSYS III and some set of tables .

Reference s

I) English Braille, American Edition 1959 . Revised 1968 . American Printing House for the Blind, Louisville, Kentucky ,
1969 .

18

2) The Nemeth Code of Braille Mathematics and Scientific Notation . American Printing House for the Blind, Louis -
Kentucky 1965 . (Revision to be published in 1973)

3) Spanner, H . V . (Compiler) . Revised International Monvol of Braille Music Notation, 1956 . American Printin g
House for the Blind, Louisville, Kentucky 1961 .

4) Code of Braille Textbook Formats and Techniques . Revised 1970 . American Printing House for the Blind, Louis-_
ville, Kentucky 1970 .

5) Millen, Jonathan K., Finite-State Syntax-Directed Braille Translation . Technical Report MTR-1829, MITR E
Corporation, Bedford, Massachusetts July 2, 1970 .

6) Developmen t
for the Blind . (Final Report) Sensory Aids Evaluation and Development Center, Massaa-U-s-
nology, Ca'mbridge, Massachusetts September 29, 1970 .

7) Krebs, B . M., Transcribers' Guide to English Braille . The Jewish Guild for the Blind, New York, New York 1967 .

8) Millen, Jonathan K ., DOTSYS N User's Guide and Transfer and Maintenance Manual . Technical Report MTR-1853 ,
MITRE Corporation, Bedford, Massachusetts July 2, 1970 .

9) Schack, Ann S . and Mertz, R . T ., &ail le Translation System for the IBM 704. Mathematics and Application s
Department, IBM Corporation, New York, New York 1961 .

10 Gerhart, W . Reid ; Millen, Jonathan K ., and Sullivan, Joseph E ., DOTSYSIll :	 A Portable Program for Grade
2 Braille Translation . Technical Report MTR-2119, MITRE Corporation, Bedford, Massachusetts May 14, 1971 .

II) Millen, Jonathan K., Choice of COBOL for Braille Translation . Technical Report &TK-1743 MITRE Corporation ,
Bedford, Massachusetts, December 1969 .

12) Siems, John R ., Report of

	

Braill eN .ew

	

Translation

	

APH .

	

Conf . on New Processes for Braill e
Manufacture . American Printing House for the Blind, Louisville, Kentucky 1968 .

13) Leffler, Lois[., The Development of a

	

zed Grade II Braille Translation Algorithm. Wescon Technical
Papers 1971, Session 30 . August 24!971 ,

14) Allen, Jonathan and Borroz, W . Terry, Recent Improvements in Braijle Transcription . Proc . ACM Conference, 1972 .

15) Key Braille Contraction Contexts . American Printing House for the Blind, Louisville, Kentucky 1969 .

16) Boyles, Marion P ., and LaGrone, Robert E ., Computer Braille Translation of the Atlanta School System . Wescon
Technical Papers 1971, Session 30 . August 24, 1971 .

17) Haynes, Robert L ., An Automated Braille Translation

	

YYe,conTochnpo! Papers 1971, Session 30 . August
24, 1971 .

19

