
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 9, NO. 1, MARCH 2001 81

Automated Braille Production from Word-Processed
Documents

Paul Blenkhorn and Gareth Evans

Abstract—This paper describes a novel method for auto-
matically generating Braille documents from word-processed
(Microsoft Word) documents. In particular it details how, by using
the Word Object Model, the translation system can map the layout
information (format) in the print document into an appropriate
Braille equivalent.

Index Terms—Blindness, Braille, document handling, visual im-
pairment.

I. INTRODUCTION

T HE BRAILLE code is the main system for the majority of
those blind people who read and write using tactile means.

The characteristics of Braille have been described elsewhere [1],
[2], and, in this paper, the authors assume that a reader has a
reasonable knowledge of the basics of Braille representation and
production.

There are a number of commercial software-based systems
that translate from Braille into computer-readable text. An algo-
rithm for carrying out this translation is described in [1]. There
are also commercial systems that translate from computer-read-
able, text-based documents into Braille. Braille hardcopy may
be produced, either by printing using a Braille printer, or by
driving a Braille display. The algorithms for translating from
text and both Grade 1 and Grade 2 (contracted) Braille are well
understood and such an algorithm is given in [2].

This paper is concerned with the translation of text documents
to Braille documents. Specifically, it considers how users of a
word processor can produce printed Braille documents, when
they have little or no knowledge of Braille. This situation is
relatively common, for example a teacher producing material
for a blind pupil in a mainstream school or an office worker
copying a document to a blind colleague.

The work described in this paper is not, by any means, the
first to address this problem and other approaches used by
others are described in Section III. However, our approach
is unique in the way that the translator is integrated with
the word processor. The advantage of this approach is that it
makes the process very easy for the user, who simply starts
translation from a menu item in MSWord. As we will discuss
later, it also makes the approach relatively “future proof.”
The downside of this approach is that the user is tied to

Manuscript received April 17, 2000; revised June 26, 2000, September 12,
2000, and October 9, 2000.

The authors are with The Centre for Rehabilitation Engineering, Speech and
Sensory Technology (CRESST), Department of Computation, UMIST Univer-
sity of Manchester Institute of Science and Technology, Manchester, M60 1QD
U.K. (e-mail: p.blenkhorn@co.umist.ac.uk).

Publisher Item Identifier S 1534-4320(01)01773-9.

one particular word processor. We attempt to address this
problem by integrating the translation engine into Microsoft
Word, which has extremely high market penetration and, con-
sequently high availability, worldwide.

The work also has a degree of novelty in that it seeks
to preserve the format of the original text document in the
Braille copy. For example, the formats of tables are main-
tained in the Braille document. We discuss this issue in Sec-
tion II.

II. THE FORMAT OF BRAILLE DOCUMENTS

A typical Braille document will consist of an optional title
page that has centered text followed by a series of pages, each of
which follows a common format [3], [4]. All Braille characters
have the same size and so on each page, the Braille characters
are placed on equally spaced lines with no subscripts, super-
scripts or changes in font size. Apart from the title page, each
of the pages will typically have the following.

1) A title line, which will normally include:
• a left-hand column that holds the print page number

that corresponds to the current Braille page. As
written text is very much more compact than
Braille, there will be, of course, a number of Braille
pages that correspond to one text page;

• a centered title that contains both the header and
footer of the text document;

• a right justified Braille number that is the number of
the current Braille page.

2) A set of Braille paragraphs that have no blank lines
between them. The first line of each paragraph gen-
erally starts with two spaces to indicate the start of a
paragraph. Alternatively, some users prefer to have the
start of a paragraph indicated by a blank line, the first
line of Braille in the paragraph is not indented in this
case. The latter convention does not strictly follow the
Braille standard [3].

3) Italics, bold, underline and other font changes are indi-
cated in Braille by using an italics sign (the Braille charac-
ters corresponding to “I”). Although marking in this way
is currently under review, it is sufficient here to detail its
past use. Any changes are relatively trivial to incorporate
into the translation system. If a single word is to be high-
lighted, a single italics sign is placed before the word. If
more than three consecutive words are to be highlighted,
two italics signs are placed before the first word in the se-
quence and one italics sign is placed before the last word
in the sequence.

1534–4320/01$10.00 © 2001 IEEE

82 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 9, NO. 1, MARCH 2001

Fig. 1. The format of text and Braille Documents.

Fig. 1 illustrates the formatting of a standard text document
and a Braille document. Braille is laid out in a relatively com-
pact manner, with a minimum of blank lines and spaces. Even
so, Braille documents are much bulkier than their text equiva-
lents. One reason for this is that Braille paper is generally much
thicker than the paper used for text documents. In addition, a
Braille cell is much larger than the character font sizes used in
text documents. A typical Braille page will have 1000 characters
on the page (25 lines at 40 characters per page). An approach
that attempts to almost halve the size of Braille documents is
to print the document indouble-sided interpointformat. Braille
characters are printed on both sides of the page, with one side
slightly offset with respect to the other, so that the Braille cells
do not coincide. The reader is capable of reading the raised dots
that form the text on the page that he/she is reading, whilst ig-
noring the indentations produced by the Braille on the other
side of the page. Another approach to reduce the amount of
space taken by the Braille, in some, but not all languages, is to
apply a language-specific set of contextual rules that allow cer-
tain words, or parts of words, to be represented by less Braille
cells than the direct text equivalent [1], [2]. This is generally re-
ferred to as contracted Braille (for English Braille this is also
referred to as Grade II Braille). For example, in Grade II Eng-
lish Braille the sequence of Braille characters DCV represents
the word “deceive.”

Clearly, given the complexity and variety of documents pro-
duced by modern word processors, there are a number of diffi-
culties and compromises in print to Braille format transforma-
tions.

III. EARLIER WORK ON CONVERTING THE FORMAT OF

BRAILLE TO PRINT

A. Introduction

To translate from text to Braille a system has to carry out two
functions.

• Translate the text into a suitable set of characters that can
be subsequently sent to the Braille printer. This process
must, when desired, produce contracted Braille.

• Arrange to drive the printer so that the Braille document
is handled correctly.

B. Early Work

The basic algorithms for computerized Braille translation
have been around since the late 1960s [5]. These systems were
designed specifically for producing Braille documents. First, the
text was translated into Braille. Secondly, a Braille Formatting
module converted the source text produced into a file suitable for
driving a Braille printer. The text was formatted according to a
set of Braille formatting codes that were embedded in the source
text to indicate centered text, italics signs, etc. The codes had to
be entered into the original text by the person who was producing
the Braille document. This person, therefore, had to have a good
understandingofBraille formatting.

C. Requirements for Braille Formatting

As computers became more widespread, and particularly
with the advent of personal computers, word processing became
more prevalent. This allowed blind computer users to produce

BLENKHORN AND EVANS: AUTOMATED BRAILLE PRODUCTION FROM WORD-PROCESSED DOCUMENTS 83

Braille versions of documents from computer-based sources
and allowed nonspecialists to produce Braille documents; for
example, an office worker producing a document for a blind
colleague. Thus, the printing of Braille documents moved from
a specialist document preparation to a standard word processing
operation with the hard copy produced by a different type of
printer.

In essence, there are three requirements to produce formatted
Braille output from a word processor as follows.

1) The user of the word processor should not have to un-
derstand Braille formatting and he/she should not have to
insert Braille.

2) The user of the word processor should not need to use sig-
nificant amounts of additional software. Preferably he/she
should be able to carry out the operation from within the
word processor.

3) The approach should be resilient to changes in versions
of the word processor. Over recent years, the word pro-
cessors seem to have an operational life of around three
to four years.

D. Approaches to Braille Formatting from Word Processors

Early Braille transcription packages made significant use of
formatting codes that were inserted by the user into the source
(text) document to control the formatting of the Braille doc-
ument. Thus, the formatting information was explicitly given
in the file typed by the user. The file produced by the word
processor was, in effect, an ASCII file with certain character
sequences used to indicate formatting. The Braille translation
would typically take place in two passes. In the fist pass the
text would be converted into Braille, with the formatting codes
passing through unchanged. The second pass would then layout
the Braille document in the manner indicated by the embedded
formatting codes.

More recently, the requirement for the user to explicitly insert
formatting codes has been removed, with the word processor
providing a WYSIWYG1 interface. In such systems, the format-
ting codes are hidden from the user and are implicitly inserted
by the word processor in response to user options. This results in
formating codes being inserted into the word processor’s files,
but this information is hidden from the user. The formatting in-
formation is used by the word processor to format the document
in a suitable form for display on the screen or to drive a printer.
One strategy to deal with such systems is for the Braille format-
ting program to read the formatting codes held in the word pro-
cessor files2 and to use this information to format the Braille for
printing. The problem with this approach is that is tightly cou-
pled to the word processor, because it uses the proprietary for-
matting codes. Over the years, different versions of ostensibly
the same word processor can, and often have had, different file
formats. Consequently, when a new word processor version is
released, the Braille formatting program often needs to be up-
dated. It also means that the formatting program is vendor-spe-
cific.

1What you see is what you get.
2In the early days, this was often WordStar. Later WordPerfect was used.

These days a number of systems also support MS Word, for example, the
Duxbury Braille Translator http://www.duxburysystems.com/.

To make the formatting program version and vendor inde-
pendent, the formatting program can be made to operate on
a standard, nonproprietary format. Most modern word proces-
sors can produce documents in rich text format (RTF). This is
a vendor-independent format that contains formatting informa-
tion. Therefore, a Braille formatting program can be written to
process RTF files. This approach has the advantage of main-
taining vendor and version independence. The only major diffi-
culty that remains is writing a reliable formatter for RTF files.
While this is a complex task, it is certainly tractable. The format-
ting software can be integrated into a word processor by writing
a relatively simple macro.

Aclosely relatedapproach is to translate theprint fileproduced
by the word processor, rather than the word processor’s native
files. This approach is also vendor and version independent. It
also requires the development of a relatively complex formatting
program [6]. This is, probably, a more complex task than writing
the equivalent software for the files in the word processor format.
One of the reasons for this is that the underlying structure of the
document is lost. Therefore, it is can difficult to determine certain
formattingfeaturessuchasnewparagraphsandtables.

IV. THE BRAILLE OUT SYSTEM

The approach adopted by the authors, which has resulted in a
program called Braille Out, is quite radically different to those
described above, it uses features that have become available in
the past few years. This approach exploits facilities offered by
the word processor itself via a defined programming interface,
rather than operating on files produced by the word processor.
In effect, the document appears to the formatting program as an
object, that supplies a set of operations and attributes that can be
used to enquire about the document’s structure and to produce
a new document in a form that can be sent to a Braille printer.
The approach has the advantage of making the formatting pro-
gram significantly simpler than those rely on processing the un-
derlying files. This is because the object will explicitly provide
information about a document’s structure on demand. The draw-
back of the approach is that it is vendor specific, but probably
not version specific because the word processor objects tend to
offer backward compatibility between releases. Thus, the ap-
proach described is tied to one word processor, in this case Mi-
crosoft Word. However, as noted earlier, Word has very high
market penetration and availability and, thus, the approach ad-
dresses the needs of a significant number of users.

A. Introduction to the Approach

Microsoft Word can be treated as a “word processing object”
that allows programs to access methods and attributes. This can
be achieved either by using OLE (object linking and embed-
ding) to embed the MSWord object in a formatting program, or
by writing the formatting program as a Visual Basic macro from
within Word itself. In either case the formatting program has ac-
cess to the documents and is capable of performing operations
on them. The approach described uses Visual Basic macros be-
cause, as we discuss below, this is very much faster than using
OLE. From the user’s perspective he/she simply sees an addi-
tional menu item from the File menu.

84 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 9, NO. 1, MARCH 2001

B. The MS Word Object

The features of the Word Object model are given elsewhere
[7]. However, in short Visual Basic supports a set of objects that
correspond directly to elements in Word. There are objects that
represent an open document, bookmarks, tables, paragraphs,
etc. Indeed, “Every type of element in Word—documents, tables,
paragraphs, bookmarks, fields, and so on—can be represented
by an object in Visual Basic” [7]. These objects expose methods
and properties that can be used to automate tasks in MS Word.

The objects of most relevance to this work are:

• The document object, which is used to open, close and
indicate which open document is to be manipulated.

• The paragraph collection of objects, this contains all of
the paragraphs in the document. Each paragraph includes
information about headers, footers, lists, paragraph align-
ment (left, justified, centered, etc.) and, of course, the ac-
tual text and its font information.

• The tables collection, which contains all of the tables in
the documents.

• The shapes collection, which contains information about
the Word shapes, including those that contain text such as
AutoShapes.

• The find object, which is used for find and replace opera-
tions.

C. The Braille-Out System

As noted in Section IV-A there are two approaches that can be
usedtoaccesstheWordObjectModel,OLEandaWordmacro.The
authorshavetriedbothapproachesinwritingBrailleOut.Bothuse
afastdynamic link library(DLL),written inC, to translatethetext
intoBraille.AVisualBasic(Version6)programisusedtointerface
betweenMSWordandthetranslationDLL.

The first approach to this problem was to use a stand-alone
Visual Basic program that controlled Word by using OLE. This
proved to be unacceptably slow—an early version of the algo-
rithm running on a Pentium processor at 233 MHz took over a
minute to translate and format a small document of some 203
words (in five paragraphs). By way of contrast the final ver-
sion of Braille Out, which is written as a Word macro, takes
just over a minute to translate and format the text in this paper
(over 3500 words and 150 paragraphs) on the same specifica-
tion of machine. It is believed that this is due to the Visual Basic
program and the Word Object being in different contexts; Word
is often quite slow when operations involve interprocess com-
munications,3 and Braille Out accesses the Word documents
many times to analyze and translate different aspects of the print
format. The problem is particularly acute because the format-
ting program needs to examine every paragraph a word at time
to determine the changes in font style that need to be mapped
into italics in Braille (see Section II). In an attempt to overcome
the out-of-context overheads, the Visual Basic code was moved
from the stand-alone program into a Word macro.

In the Braille-Out system the file to be translated is opened as
one document. A second document, which is blank and which

3A discussion on this issue is beyond the scope of this article. For further
information on in-context and out-of-context operations can be obtained from
the Microsoft Developers Library.

TABLE I
FORMATTING TIME FOR DOCUMENTS OFVARIOUS LENGTHS

has a page and font size that matches the Braille document,
is also opened. The formatted Braille text is inserted into this
second document. Braille Out processes the first document in
several passes converting both the text into Braille and the text
formatting into a corresponding Braille format. Of particular in-
terest is the capability of this approach to readily detect and ap-
propriately convert document elements, such as the print page
numbers, (floating) text boxes, tables and lists.

A high-level pseudocode description of the algorithm is given
in the Appendix.

V. RESULTS AND CONCLUDING REMARKS

The current version of Braille Out produces reliable con-
tracted literary Braille from a wide variety of documents. The
layout is deemed to be good and speed is acceptable. However
there are a number of issues that need to be commented upon.

First, while the speed is generally acceptable, very large doc-
uments can cause the system to slow down unacceptably. The
relationship between processing speed and document size is
nonlinear. This can be demonstrated by the figures given in
Table I. These were derived by noting the formatting time for
three documents in the size ratio 1: 2 : 4. Thedocument used
was a draft version of this paper; copying and pasting the docu-
ment at its end created longer versions. The machine used was
a Toshiba Portégé subnotebook running at 233 MHz with 128
MB of RAM.

A very long document can take several hours. The reason for
this is unclear at present. The only solution for Braille Out is to
suggest an upper limit on the size of documents to users.

Word creates the Braille document before printing and in-
serts Braille page numbers in the page header by using the auto-
matic page numbering facility. This causes a problem because
Word produces a print number (e.g., 12) rather than the correct
Braille number (which for 12 is #AB). This is, of course, incor-
rect. However, initial user feedback indicates that this is not too
significant, as it is clear from the Braille what the actual page
number should be. It is intended to correct this shortfall in a fu-
ture release of the software.

A further minor problem concerns the use of embedded Word
documents. Currently Braille Out does not support these. Fi-
nally, Braille Out does not currently support the capitals sign.
This has been omitted because it is not commonly used in the
U.K. Again, this is a shortfall, which will be corrected, in a fu-
ture update.

BLENKHORN AND EVANS: AUTOMATED BRAILLE PRODUCTION FROM WORD-PROCESSED DOCUMENTS 85

Office 2000 offers support for multi-lingual Braille transla-
tion because it allows portions of a document to be marked as
being of a particular language. Although our translation algo-
rithm is multilingual [2], we do not currently change languages
automatically.

APPENDIX

The Braille Conversion Algorithm
Open text document to translate
Create blank Braille document
Initialize Braille document header text
Initialize Braille document page numbers
For Each text box with text in document Do

Convert text boxes into frames
End For
For Each table Do

Convert each row into a set text fields
separated by spaces

End For
For Each list (includes bullets and list

numbers) Do
Convert to text

End For
Using the Find object

convert multiple spaces into single
spaces
convert tabs into three spaces
remove multiple carriage returns

End Using
For Each paragraph In text document DO

If hard page break in text Then
put hard page break in Braille

End If
End For
If print page number changed Then

change print page number on Braille page
End If
If header changed Then

change Braille page header
End If
Insert two spaces in Braille document
For Each word In paragraph Do

If word is Bold or Italics or Underlined
Then

Insert italics information into text
convert modified paragraph into

Braille
insert in Braille document

End If
If text paragraph alignment is full jus-
tification Then ′ full justification not
valid in Braille

Set Braille paragraph alignment to
left justified

Else
Set Braille paragraph alignment to
same as text

End If
End For
Print Braille document To Braille printer

′ emboss Braille

REFERENCES

[1] P. Blenkhorn, “A system for converting Braille into print,”IEEE Trans.
Rehab. Eng., vol. 3, pp. 215–221, June 1995.

[2] , “A system for converting print into Braille,”IEEE Trans. Rehab.
Eng., vol. 5, pp. 121–129, June 1997.

[3] British National Uniform Type Committee,A Restatement of the
Lay-Out, Definitions and Rules of the Standard English Braille
System. London: Royal National Institute for the Blind, 1955.

[4] American Association of Workers for the Blind and Association for the
Education of the Visually Handicapped,English Braille, American Edi-
tion. Louisville, KY: American Printing House for the Blind, 1970.

[5] R. A. J. Gildea, G. Hubner, and H. Werner, Eds., “Computerised Braille
production,” inProceedings of the 1. International Workshop in Mun-
ster (Germany), March 1973. Munster, Germany: Rechenzentrum der
Universitat Munster, 1974.

[6] J. E. Sullivan, “Conversion of print format for Braille,” inProc. 6th In-
ternational Workshop on Computer Applications for the Visually Hand-
icapped, 1990, pp. 1–14.

[7] Microsoft Corporation, “Microsoft office 97/visual basic programmer’s
guide,” Microsoft Corporation, 1996.

Paul Blenkhorn received the B.Sc.(Hons.) degree
in mathematics from the University of Manchester
(UMIST), U.K.

He has he has been an active developer of systems
for people with disabilities for the past 18 years and
worked at the Open University and at the Research
Centre for the Visually Handicapped at the Univer-
sity of Birmingham, U.K. He was Co-Founder and
Research Director of Dolphin Systems. He joined
UMIST in 1991 and is currently a Senior Lecturer
in the Department of Computation. Together with

G. Evans, he is Co-Director of the Centre for Rehabilitation Engineering,
Speech and Sensory Technology. He has broad research interests in the area of
technology and people with disabilities.

Gareth Evans received the B.Sc. (Hons.) degree in
electrical and electronic engineering and the Ph.D.
degree in computation from the University of Man-
chester (UMIST), U.K.

He joined UMIST in 1987 and is currently a Senior
Lecturer in the Department of Computation. Together
with P.l Blenkhorn, he is a Co-Director of the Centre
for Rehabilitation Engineering, Speech and Sensory
Technology. His research interests include alternative
interfaces to computers for people with disabilities,
speech synthesis and training, and assistive devices

for people with a range of disabilities.

