|no-par> <|spacing> <|compress>
,family 9come has det]m9$ to h a significant e6ect on gradua;n rates = /ud5ts4 ,a family's 9come c impact _m aspects ( a /ud5t's life4 ,"! has be5 num]\s /udies p]=m$ on ! e6ect t family 9come has on /ud5t's gradua;n rates4 ,? !sis focuses on ! hypo!sis t /ud5ts :o come f families ) hi<] 9come >e m likely to su3e$ & graduate ?an ^? f l[] 9come families4 ,? !sis focuses on h[ family 9come e6ects ^! /ud5ts & 9 :at ways4 ,? !sis %[s ! di6];es t hi< 9come & l[ 9come /ud5ts face4 ,! f9d+s p]=m$ 9 ? !sis h %[n t family 9come 9 fact does h a significant e6ect on gradua;n rates4 ,f9d+s al h %[n t race plays a role 9 gradua;n rates z well4 ,? !sis w g 9to grt] detail on gradua;n rates bas$ on family 9come & race4
.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> | .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- |
,fr$]ick ,floss1 ,ph4,d4 | ||
,pr(essor & ,*air ( ,economics @& ,f9.e | ||
,!sis ,advisor | ||
.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- | <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> <|'> | .-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- |
,kev9 ;,j4 ,mill]1 ,$4,d4 | ||
,d1n ( ! ,graduate ,s*ool | ||
,9 prior g5]a;ns1 e>n+ a hi< s*ool diploma 0 su6ici5t 5 = ! av]age p]son to a*ieve a middle class 9come4 ,9 td's society1 9 ord] = mo/ 9dividuals to h a c>e] t he or %e w obta9 a middle class 9come he or he m/ e>n a hi<] degree ( $uca;n4 ,9dividuals a*ieve e>n+ a middle class 9come or hi<] by fur!r+ _! $uca;n & att5d+ college to obta9 a degree s* z a ,ba*elors1 ,ma/]s1 or ,doctorate degree4 ,apply+ to college is an ov]:elm+ exp]i;e = any"o :o is ( 9t]e/ 9 att5d+ college4 ,"s /ud5ts h an advantage ov] o!r /ud5ts /rictly bas$ ( _! families,0 9come4 ,a family's 9come has a significant e6ect on /ud5t's su3ess 9 college & prep>a;n = college4 ,"! is a gap 2t ^? hi< 9come families & l[ 9come families4 ,"?\t ? pap] ! gap 2t hi< & l[ 9come families w 2 4cuss$ 9 grt] detail4
,hi< 9come families >e able to provide _! *n ) ! tools !y ne$ 9 ord] to prep>e = college4 ,s* tools 9clude pay+ = ! college applica;ns & provid+ hm or h] ) addi;nal assi/.e s* z tutors to help !m ) _! classes & ,,sat prep4 ,? is an advantage = ^! /ud5ts 2c !y >e able to "w h>d] & get 9to bett] colleges1 : ultimately sets !m up = a hi<] su3ess rate4 ,? is 2c ^! /ud5ts >e able to get 9to hi<] gradua;n rate colleges4 ,:ile att5d+ a hi<] gradua;n rate college1 /ud5ts >e m focus$ on a*iev+ ! goal ( su3ess;lly completely _! degree4 ,^! hi<] gradua;n colleges al a3ept only ! be/ c&idates to att5d _! college4 ,a /ud5t :o has l[ grades 9 hi< s*ool1 >e n go+ to 2 a3ept$ 9to ! same college t a /ud5t :om e>ns hi< grades 9 hi< s*ool4 ,? "pially has to d ) ! type ( family ^! /ud5ts come f4 ,/ud5ts :o e>n hi< grades >e typically ! /ud5ts :o c>e ab s*ool & h _! families :om >e 9volv+ 9 _! daily life & s*ool "w4 ,l[] 9come family /ud5ts may n h ! advantage ( hav+ _! families z 9volv$ 9 ! s*ool "w z hi<] 9come families4 ,e>n+ a college degree af hi< s*ool gradua;n is an opportun;y _m 9dividuals 9t5d to a3ompli%4 ,"! >e num]\s r1sons 9 : an 9dividual *oses to att5d college & e>n a degree4 ,mo/ 9dividuals want a college degree 2c he or %e wants to excel 9 life & 2 su3ess;l e>n+ an 9come ": he or %e >e able to support !mvs & _! families4 ,al1 mo/ p m/ obta9 a hi<] degree ( $uca;n 9 ord] to 2 3sid]$ a middle-9come class p]son & c b>ely make 5ds meet ) a m9imum wage or l[ sal>y job4 ,al?1 a hi<] 9come c>e] c 2 a3ompli%$ )\t a college degree1 x has 2come m* m di6icult to obta9 a hi<] pay+ c>e] ) no sort ( $uca;n o!r ?an a hi< s*ool diploma4 ,_m c>e]s t pay m ?an a middle class 9come require t an 9dividual has a degree 9 t specific field4 ,_m 9dividuals *oose to att5d college af hi< s*ool gradua;n 9 ord] to obta9 a hi<] degree ( $uca;n 2c $uca;n is s significant 9 society td4 ,e>n+ a hi<] $uca;n is a goal "s 9dividuals pursue af hi< s*ool gradua;n 2c he or %e feels su3ess;l & ga9s a rew>d+ feel+ once a college degree is rcvd4 ,e>n+ a college degree is a huge a3ompli%;t & a rew>d+ degree ( a*ieve;t once complet$4 ,:5 an 9dividual has a college degree he or %e is look$ at 9 a di6]5t manor4 ,:5 college $uca;n is %[n on an 9dividual's resume :ile apply+ to an op5 posi;n = a c]ta9 job1 ? makes !m /& \ & 2 notic$ by employ]s4 ,employ]s look = college $uca;n 9 alm e job4 ,) no college $uca;n1 "s 9dividuals may n qual;y = c]ta9 jobs4 ,9dividuals ) no college degree mi,"! h be5 num]\s pap]s writt5 on gradua;n rates & h[ family 9come a6ects ^! gradua;n rates4 ,al1 h[ family 9come a6ects /ud5ts 9 g5]al reg>d+ _! s*ool+4 ,/ud5ts may n r1lize h[ family 9come a6ects ! gradua;n rate ( college /ud5ts4 ,a family's 9come sets up a /&>d expecta;n ( a *'s su3ess4 ,if a * comes f a l[ 9come family ^: p>5ts h no college $uca;n1 he or %e w likely n fur!r _! $uca;n ei4 ,p>5ts >e sett+ an example = _! *n t fur!r+ "os $uca;n is n a require;t4
,! foll[+ p>agraphs provide lit]ature bas$ on ! gradua;n gap relat$ to family 9come & on /ud5t loan debt by di6]5t au?ors4 ,! h al provid$ h[ family 9come has an e6ect on /ud5ts s*ool "w4 ,! foll[+ p>agraphs >e bas$ on ! di6]5t lit]ature 4cov]$ & :at o!r p >.d ! _w h rese>*$ reg>d+ ! topic ( gradua;n rates & family 9come4 ,rese>* on :at has be5 3duct$ by o!r au?ors on ! topic ( gradua;n rates & family 9come & :at !y h 3clud$ f _! [n rese>*4 ,^! r1d+s >e 9t]e/+ & "kl$g1ble4 ,^! rese>* pap]s 7 help;l to see :at o!r p >.d ! _w h writt5 & rese>*$ reg>d+ ? topic4 ,:ile p]=m+ rese>* ,i h ga9$ k bas$ on ! topic ( 4cus.n & r1liz$ h[ m* ( an impact family 9come does 9 fact h on gradua;n rates4 ,! foll[+ p>agraphs w al 4cuss topics on /ud5t loan debt4 ,_m /ud5ts >e fac$ ) a trem5d\s am.t ( /ud5t loan debt af gradua;n4 ,? ties 9to ! rela;n ( family 9come4 ,/ud5ts )\t ! f9ancial support ( _! families may h to completely f9.e _! $uca;n z _m /ud5ts d4 ,_m /ud5ts su6] ) /ud5t loan debt af ! comple;n ( ! degree1 & "s"ts )\t ev5 complet+ _! degree due to hav+ to job \ ( college = v>i\s r1sons4 ,n e /ud5t t goes to college completes _! degree1 b >e / fac$ ) /ud5t's loans t !y h borr[$ = s*ool4 ,ev5 )\t complet+ _! degree1 /ud5ts >e requir$ to pay back ! m"oy t !y borr[$4 ,! f/ rese>* pap] "kn z 8,family ,9come & ! ,college ,comple;n ,gap10 writt5 by ,alanna ,bjorklund-,"y ( ,john ,hopk9s ,s*ool ( ,$uca;n writt5 9 ,m>* ( #bjaf4,:5 /ud5ts d get 9to college & />t tak+ college c\rses1 "s /ud5ts >e unable to graduate = v>i\s r1sons4 ,"! >e _m r1sons t /ud5ts may n 2 able to graduate & e>n _! diploma4 ,"o ( ! r1sons is 2c ( ! am.t ( /ud5t loan debt t /ud5ts face :5 att5d+ college4 ,mo/ /ud5ts >e unable to pay = _! college tui;n \ ( pocket & >e =c$ to f9.e _! $uca;n4 ,? puts a f9ancial burd5 on _! future & !y may f9d !mvs unable to complete _! program1 due to ! am.t ( m"oy t ne$s to 2 borr[$4 ,_m /ud5ts h to completely f9.e _! 5tire $uca;n4 ,"! cd 2 ob/acles al;g ! way t a6ect !m f rcvg _! f9ancial aid1 : (t5 l1ds to dropp+ \4 ,"s ( ^! ob/acles 9clude n 2+ able to borr[ m m"oy or n 2+ able to keep c]ta9 s*ol>%ips t !y h e>n$ =c+ !m to drop \ ( college4
,al? grants & s*ol>%ips >e available to /ud5ts1 due to ! reces.n 9 #bjjh1 "! 0 less m"oy t univ]sities cd 3tribute to grants & s*ol>%ips4 ,? al l$ to p hav+ to borr[ m m"oy = tui;n 2c ^? grants & s*ol>%ips 7 no l;g] 5 to cov] tui;n4 ,/ud5ts :o wd dep5d on grants & s*ol>%ips wd n[ h to dep5d on borr[+ m"oy to pay = college4 8,f #bjje to #bjaa al"o1 total private /ud5t loan debt m ?an d\bl$ f @s#ee4i billion to @s#adj4b billion10 z /at$ by ,anne ,johnson1 ,tob9 ,van ,o/]n1 & ,abraham ,:ite 9 _! pap] 8,! ,/ud5t ,debt ,crisis4^8,! purpose ( ? pap] is to see h[ ! family 9come ( a /ud5t's families relates to ! gradua;n rate ( ^! /ud5ts4 ,"! is a gap 2t ! gradua;n rates ( l[ 9come & hi< 9come families4 ,"! is al a gradua;n gap 2t di6]5t racial gr\ps4 ,"! has be5 rese>* : %[s t :ite 9dividuals t5d to h a hi<] gradua;n rate ?an black 9dividuals4 ,! purpose ( ? rese>* pap] is to see :at t gap is & h[ x may h *ang$ ov] ! ye>s4 ,! ,,sas program1 ,/ati/ical ,analysis ,sy/em1 0 us$ 9 ord] to obta9 ^! results4 ,:ile us+ ! ,,sas program ,! ,,,m1ns1 univ>iate1 reg1,' & ,,autoreg proc$ures 7 d]iv$4 ,? /udy uses f\r v>iables : 9clude prop]ty tax1 expect$ $uca;n1 m$ian 9come1 & gradua;n rate4 ,^! v>iables 7 f.d = all #ej /ates 9 ! ,unit$ ,/ates4 ,! data 0 collect$ f ,,ip$s4
,! ,,m1ns ,proc$ure us$ 9 ! ,,sas program provides data summ>y tools to d]ive /ati/ics = v>iables us$ 9 ,,sas4 ,! ,,m1ns ,proc$ure1 : is ! f/ proc$ure %[n e/imates quantiles s* z m1n1 /&>d devia;n1 m9imum1 & maximum4 ,? proc$ure al has ! abil;y to p]=m a ;t-te/4 ,9 ! results d]iv$ f ! ,,m1ns ,proc$ure1 ! ;,n v>iable 9 ! *>t is = ! numb] ( obs]va;ns4 ,! m1n is ! >i?metic av]age1 ! m9imum is ! l[e/ value1 & ! maximum is ! hi ,! v>iables us$ :ile p]=m+ ! ,m1n ,proc$ure 7 prop tax1 ,exp,$1 ,m$,9c1 & ,grad,rate4 ,! numb] ( obs]va;ns us$ 7 #ea4 ,m1n is ! av]age ( all ! data4 ,\r results d]iv$ f runn+ ? regres.n 0 t ! m1n ( prop tax 0 #hijfjea4hb1 ! m9imum 0 #ebjfgi4jj1 & ! maximum 0 #eafjeddh4jj4 ,! results d]iv$ = ,exp,$ 0 ! m1n 2+ #bbfabaef4ef1 ! m9imum 0 #bgcfcdc4jj & ! maximum 0 #acejghjef4 ,! results d]iv$ 9 ! ,m$,9c 0 ! m1n 0 #dehdjdi1 ! m9imum 0 #cbich4jj1 & ! maximum 0 #fafgb4jj4 ,la/ly1 ! ,grad,rate m1n 0 #hb4iijaiafa1 ! m9imum 0 #fh4ejjjjjj1 & ! maximum 0 #ij4hjjjjjj4 ,! /&>d devia;n = ,prop,tax 0 #aaihghec4bh1 = exp $ 0 #bcebicdh4ic1 = m$9c 0 #gceg4bf1 & = grad rate 0 #e4daefafe4 ,all ^! figures >e %[n 9 ! ,figure #a abv4 ,%[n 9 ,figure #b 2l is a l9e graph ( ! v>iable 9 ,! ,,m1ns ,proc$ure z j 4cuss$4 ,! second proc$ure d]iv$ f ! ,,sas program 0 ,! ,,univ>iate ,proc$ure4 ,? 0 ran = all ( ! v>iables1 proptax1 exp $1 m$9c1 & grad rate4 ,! ,univ>iate proc$ure d]ives mo;ts1 basic /ati/ical m1sures1 te/s = loca;n ,mu#j "7#j1 ,quantiles1 & extreme obs]va;ns4 #j #bjjjjjjj #djjjjjjj #fjjjjjjj #hjjjjjjj #ajjjjjjjj #abjjjjjjj #adjjjjjjj #afjjjjjjj ,! ,,m1ns ,proc$ure ,prop,tax ,prop,tax ,exp,$ ,exp,$ ,m$,9c ,m$,9c ,grad,rate ,grad,rate ,! proptax cr1t$ ! m1n #hijfjea4hb z %[n 9 ! ,,m1n ,proc$ure z well4 ,! ,mo;ts *>t provid$ ! m1n /&>d devia;n1 skew;s1 uncorrect$_/correct$ ,,dd1 coeff v>ia;n1 sum obs]va;ns1 v>i.e1 kurtosis1 & /&>d ]ror m1n4 ,! v>i.e %[n 0 #a4dcgji,e#ad1 & kurtosis 0 #f4jcadjbih4 ,! basic /ati/ical m1sures %[$ ! range & 9t]qu>tile range z well z m1n1 m$ian1 /&>d devia;n1 & v>i.e4 ,! te/s = loca;n ,mu#j "7 #j provid$ /ud5ts ;,t : 0 #e4cjeeca1 sign : 0 #be4e & sign$ rank : 0 #ffc4 ,! ,pr @> _\t_\ 0 @<#4jjja1 ,pr @> "7 _\,m_\ 0 @<#4jjja1 & ,pr @>"7 _\,s_\ 0 @<#4jjja4 ,! quantiles *>t %[$ ! level ( #ajj.0 maximum1 #ej.0 m$ian1 & #j.0 m9imum4 ,! hi,figure #a3 "<,,sas3 ,! ,,m1ns ,proc$ure">
,figure #b3 "<,,sas3 ,! ,,m1ns ,proc$ure graph$">
,sec;n #c4b3 ,! ,univ>iate ,proc$ure = ,prop ,tax
"<,figure #c3 ,,sas ,! ,univ>iate ,proc$ure">
,! next *>t %[n 2l z ,figure #e is "kn z ! basic /ati/ical m1sures4 ,9 ? *>t x %[s ! m1n1 m$ian1 mode1 /&>d devia;n1 range1 & 9t]qu>tile range4 ,! m$ian is ! middle numb] ( ! values4 ,9 \r example1 ! m$ian is #dggfbeg4 ,we did n obta9 a mode f \r results = prop]ty tax :ile \r m1n 0 #hijfjeb4 ,\r range 0 #eajhdgfi : is ! m1sure;t ( ! spr1d ( ! v>iables4 ,? is det]m9$ by ! di6];e ( ! hi
,! quantiles *>t %[n 9 ,figure #f 2l provides levels & quantile f #ajj.0 to #j.04 ,! #ajj.0 is ! maximum value ( ! v>iable & ! #j.0 is ! m9imum value ( ! v>iable4 ,\r maximum value is #eafjeddh & \r m9imum value is #ebjfgi4 #ej.0 %[s ! m$ian value : is #dggfbeg4 ,! p]c5tages >e brok5 9to quantiles4 ,! #be.0 is ! f/ quantile :ile #ej.0 is ! second & #ge.0 is ! ?ird foll[$ by #ajj.0 2+ ! f\r? quantile4 ,! extreme obs]va;ns *>t is brok5 9to ! five l[e/ & five hi
,! quantiles is %[n 9 graph =m 9 ,figure #g4 ,bas$ on ! graph1 we c see f #j to #a "! 0 no *ange & ! graph %[s a 3/ant value4 ,f #a to #b "! is a dra/ic 9cr1se !n /ays ! same f #b to #c4 ,we al 2g9 to see />t+ at #c on to #ab "! is a /1dy decr1se & x has a /1dy slope ": x !n />ts to h an alm 3/ant value f #h to #ab4
,extreme obs]va;ns is \r next *>t %[n 2l 9 ,figure #h4 ,"! is a l[ & a hi< column ) ! value & obs]va;n sec;n %[n4 ,! l[e/ value 0 #ebjfgi = obs]va;n #df & ! hi #j #ajjjjjjj #bjjjjjjj #cjjjjjjj #djjjjjjj #ejjjjjjj #fjjjjjjj #j #b #d #f #h #aj #ab #ad ,quantiles ,9 ! mo;ts *>t = ,exp $1 ! result provid$ u ) a m1n = \r data z #bbfabaei4f4 ,! /&>d devia;n d]iv$ 0 #bcebicdh4i4 ,s9ce is x %[n t ! /&>d devia;n is hi<1 ? m1ns t ! obs]va;ns >e m spr1d \4 ,\r skew;s %[n = exp $ is #b4hdjihfid4 ,s9ce ! m1n result$ 9 #bbfabaei4f is m ?an ! m$ian ( #agjehgff1 \r results h a positive skew;s4 ,! uncorrect$ ,,ss = \r v>iables 0 #ebficd,e#af4 ,kurtosis %[n on ! mo;ts table is ! m1sure ( ! h1vi;s ( ! tails 9 a 4tribu;n4 ,normally a kurtosis ( #j is "kn z normal 9 ! ,,sas program4 ,\r kurtosis is #aj4ebbdaab :1 is a positive numb]4 ,! positive numb] %[s t ^! tails >e h1vi] = a normal 4tribu;n4 #j #ajjjjjjj #bjjjjjjj #cjjjjjjj #djjjjjjj #ejjjjjjj #fjjjjjjj ,l[e/ ,hi ,9 ! mo;ts *>t = ,m$ 9c1 ! m1n ( \r data is #dehdj4dijb4 ,\r /&>d devia;n result$ 9 ! value ( #gceg4behca4 ,s9ce /&>d devia;n is hi<1 ! obs]va;ns >e m spr1d \4 ,\r skew;s %[n = m$ 9c is #jdfahbfic4 ,9 \r case = m$ 9c ! m1n is v close to ! m$ian4 ,\r m1n is #dehdjc4di & \r m$ian is #ddbhb4jj4 ,s9ce ! m1n is / m ?an ! m$ian1 \r results h a positive skew;s4 ,! uncorrect$ ,,ss = \r v>iables 0 #a4jihge,e#aa4 ,kurtosis %[n on ! mo;ts table is ! m1sure ( ! h1vi;s ( ! tails 9 a 4tribu;n4 ,normally a kurtosis ( #j is "kn z normal 9 ,,sas4 ,\r kurtosis is -#j4daihgga : is a negative numb]4 ,! negative numb] %[s t ^! tails >e li ,9 ! mo;ts *>t = grad rate1 ! m1n ( \r data is #hb4iijaifa & \r /&>d devia;n is #e4daefafdi4 ,s9ce /&>d devia;n is hi<] ?an #j1 ! obs]va;ns >e m spr1d \4 ,\r skew;s %[n = grad rate is -#j4ibgdhhg4 ,? is ! only results t _h a negative numb] = ! skew;s4 ,? m1ns t ! m1n is less ?an ! m$ian 2c ( ! negative skew;s4 ,9 \r case = grad rate ! m1n is v close to ! m$ian4 ,\r m1n is #hb4iijbj & \r m$ian is #hd4hjjj4 ,s9ce ! m1n is less ?an ! m$ian1 \r results h a negative skew;s4 ,! uncorrect$ ,,ss = \r v>iables 0 #cebgbb4de4 ,kurtosis %[n on ! mo;t's table is ! m1sure ( ! h1vi;s ( ! tails 9 a 4tribu;n4 ,normally a kurtosis ( #j is "kn z normal 9 ,,sas4 ,\r kurtosis is #j4djccgfei : is a positive numb]4 ,! positive numb] %[s t ^! tails >e h1vi] = a normal 4tribu;n4 ,! ,,reg ,proc$ure provid$ dep5d5t v>iable ,,col ,,col1 college1 %[n 9 ,figure #i 2l4 ,"! 7 #ea obs]va;ns r1d & #ej obs]va;ns us$4 ,x provid$ tables = analysis ( v>i.e & p>amet] e/imate : w 2 fur!r 4cuss$ 9 ! foll[+ p>agraphs4 ,\r regres.n equa;n is writt5 z foll[s3 ;,,,p "7 a ,ìA bq,' ,or ;,q "7 .b#j "6 .b#a,p "6 ;,u ,! ;,q equa;n is a func;n ( ;,p4 ,! f/ table %[s analysis ( v>i.e4 ,9 ! table is degree fre$om or ,,df1 sum ( squ>es1 m1n squ>e1 ;,f-value & ,pr @> ;,f4 #a"> ,degree fre$om3 degree fre$om is associat$ ) ! s\rces ( v>i.e4 ,9 ord] to obta9 total v>i.e we use ;,n-#a4 ,9 \r example "! 7 #ej obs]va;ns us$ = ! degrees fre$om is #ej-#a"7 #di4 #b"> ,sum ( ,squ>es3 ! sum ( squ>es is det]m9$ by ! ,,ss total ,ìA ,,ss residual or ,,ss total "7 ,,ss model "6 ,,ss ,residual "7 #j4ieii4 ,? is \r ;r-squ>$ value4,figure #h3 "<,,sas3 ,extreme ,obs]va;ns">
,figure #i3 "<,,sas3 ,extreme ,obs]va;ns ,graph$">
,sec;n #c4c3 ,! ,univ>iate ,proc$ure = ,exp ,$
,sec;n #c4e3 ,! ,univ>iate ,proc$ure = ,grad ,rate
,sec;n #c4f3 ,! ,,reg ,proc$ure
,figure #aj3 "<,,sas ,! ,reg ,proc$ure">
,\r next model is ,! ,,reg ,proc$ure t provides ,durb9-,watson ;,d t is us$ to te/ = autocorrela;n4 ,f ! regres.n results ! ,durb9 ,watson ;,d 0 #a4gif ) #ej obs]va;ns : %[s a positive autocorrela;n4 ,! f/ ord] ( autocorrela;n 0 #j4jih4 ,s9ce \r ;,d value 0 #a4gif ? %[s positive autocorrela;ns4
,! ,,autoreg ,proc$ure 0 al d]iv$ 9 ! ,,sas program4 ,? proc$ure provid$ ord9>y l1/ squ>e e/imates1 p>amet] e/imates1 e/imates ( autocorrela;ns1 prelim9>y ,,mse1 e/imates ( autoregressive p>amet]s1 & ! yulewalk] e/imates4 ,? proc$ure is us$ :5 ]rors >e auto correlat$ or het]osc$a/ic;y to e/imate & pr$ict l9e> regres.n models = "t s]ies & us$ to correct !m4
,! f/ *>t label$ ord9>y l1/ squ>es %[n 9 ,figure #ab1 provid$ ,,,sse1 mse1 sbc1 mae1 mape1,' ,durb9 ,watson1 ,,dfe1 ,root ,,,mse1 aic1 aicc1 hqc1,' regress ;r-squ>e & total ;,r-squ>e4 ,,sse m1ns sum ( squ>e ]rors1 ,,mse m1ns m1n squ>e ]ror1 ,,mae m1ns m1n absolute ]ror1 ,,mape /&s = m1n absolute p]c5tage ]ror1 & ,,dfe /&s = degree fre$om ]ror4 ,9 \r *>t ! 9t]cept value ( p>amet] e/imate is #bcicc1 exp$ is #j4jjbec1 & m$9 is #j4gfcjc4 ,\r /&>d ]ror = 9t]cept 0 #ajiei1 exp$ #j4jjjjgfa1 & m$9c #j4bdji4 ,\r ;t-values 7 #b4ah1 #cc4cc1 & -#c4ag4 ,! approximate ,pr @> _\t_\ 0 #j4jcdj1 @<#4jjja1 & #j4jjbg4
#a"> ,root ,,mse3 9 \r example1 ! root ,,mse 0 #abbgj & ,r#b 0 #j4ieii4 ,! total ;r-squ>e _h ! same value ( #j4ieii m1n+ ! auto regressive ]ror 0 n us$4 #b"> ,e/imat$ model3 ",9 3clu.n1 bas$ on ! >ticles & regres.ns pres5t$1 ! gap 2t ! ri* & ! poor has an e6ect on college gradua;n rates4 ,x is no surprise t /ud5ts f hi<] 9come families h a bett] advantage t[>ds su3ess & complet+ _! college $uca;n1 simply due to ! support he or %e has f _! families4 ,l[] 9come family /ud5ts may n h ! same type ( support sy/em4 ,*n f l[] 9come families may lack hav+ _! p>5ts &_/or p>5ts,0 home to assi/ on s*ool "w due to _! p>5ts hav+ to "w odd h\rs at l[ 9come jobs4 ,hav+ guid.e f an old] 9dividual s* z p>5ts & gr&p>5ts1 help a /ud5t h1d on ! "r pa? = su3ess 9 life4 ,? is n to say t l[] 9come families >e n supportive ( _! *n :5 x comes to att5d+ college1 b ^! l[] 9come families >e unable to provide :at ! hi<] 9come families c = _! *n2 s* z ,,sat prep1 m"oy = exp5ses1 & tutor+4
,l[] 9come family /ud5ts face di6]5t ob/acles t hi<] 9come family /ud5ts d n4 ,^! l[] 9come /ud5ts typically f9d !mvs hav+ to "w :ile att5d+ college1 : has a grt e6ect on ! am.t ( "t !y c sp5d on _! c\rse"w4 ,try+ to bal.e bo? s*ool & "w is a di6icult task = _m p4 ,? l1ds to dropp+ \ 2c !y >e unable to "w & att5d s*ool at ! same "t4 ,hi<] 9come /ud5ts may n h to get a job :ile att5d+ college 2c !y >e provid$ ) ! m"oy exp5ses !y ne$ by _! families4 ,ano!r important topic 9 reg>ds to ! l[] gradua;n rate 2t /ud5ts is /ud5ts t h *n prior to att5d+ college or dur+ college4 ,complet+ college 2comes m di6icult = ^? /ud5ts :o has ano!r 9dividual o!r ?an !mvs to take c>e (4 ,:ile hav+ *n & att5d+ college z ! same "t ? cd 2 extremely di6icult1 especially = a s+le p>5t4 ,he or %e w h to f9d a sitt] or pay = "dc>e :ile !y att5d classes4 ,=tunately1 "s college (f] "dc>e on site = /ud5ts4 ,al? ? is a help;l opportun;y = ^! s+le p>5ts1 x has be5 %[n t s+le p>5ts >e less likely to graduate & complete _! programs ?an ^? /ud5ts :o d n h a *4 ,/ud5ts ) *n may al take m* l;g] to complete _! degrees due to hav+ to att5d less c\rses e seme/] oppos$ to a /ud5t :o is able to 2 full "t 9/1d ( "p "t4 ,s+le p>5ts att5d+ college >e =c$ to face di6icult ob/acles ?an ^? /ud5ts :o d n h *n :ile att5d+ college4 ,"! likely w 3t9ue to 2 a gap 2t ! ri* & ! poor 9 t]ms ( gradua;n rates se5 9 college "?\t ! ye>s4 ,( ! _m /ud5ts t att5d college e seme/]1 "! >e num]\s /ud5ts t drop \ = _m di6]5t r1sons4 ,"s ( ! r1sons 9clude fail+ classes or unable to pay = ^! college classes4 ,if complet+ a college degree 0 an easy a*ieve;t1 "ey"o wd h a college degree4 ,x has be5 %[n t /ud5ts :o come f l[ 9come families >e n giv5 ! tools & guid.e !y ne$ 9 ord] to prep>e !mvs = college4 ,? cd ev5 2 provid+ /ud5ts ) ! requir$ textbooks e ye> = ea* c\rse 9 hi< s*ool4 ,"s l[] 9come >1s may n 2 able to provide _! /ud5ts ) ! same am.t ( tools t a hi<] 9come s*ools >e able to4 ,"s s*ools ev5 provide laptops & tablets = _! /ud5ts1 :ile l[] 9come >1s mi